Class  interval     0 – 10     10 – 20      20 – 30     30 – 40     40 – 50      50 – 60
             Frequency  (fi)        8               7              f1              8                8                f2
Marks obtained  | 
Number of students  | 
More than 100  | 
60  | 
More than 200  | 
55  | 
More than 300  | 
43  | 
More than 400  | 
36  | 
More than 500  | 
32  | 
More than 600  | 
30  | 
More than 700  | 
17  | 
More than 800  | 
8  | 
More than 900  | 
3  | 
Days 10-20 20-30 30-40 40-50 50-60 60-70 70-80 Total  | 
No. of absentees 12 30 x1 65 x2 25 18 229  | 
 
Class Interval  | 
Frequency  | 
0 − 20  | 
3  | 
20 − 40  | 
 9  | 
40 − 60  | 
12  | 
60 − 80  | 
12  | 
80 − 100  | 
x  | 
100 − 120  | 
6  | 
120 − 140  | 
5  | 
140 − 160  | 
 12  | 
160 − 180  | 
5  | 
180 − 200  | 
7  | 
Annual income(in Rs)  | 
Number of families  | 
100000 – 200000  | 
8  | 
200000 – 300000  | 
9  | 
300000 – 400000  | 
17  | 
400000 – 500000  | 
18  | 
500000 – 600000  | 
14  | 
600000 – 700000  | 
6  | 
700000 – 800000  | 
3  | 
Class  | 
1st weighing  | 
|
0-5  | 
a  | 
x  | 
5-10  | 
b  | 
y  | 
10-15  | 
11  | 
40  | 
15-20  | 
52  | 
50  | 
20-25  | 
75  | 
30  | 
25-30  | 
22  | 
28  | 
                                                
                                                   (A)                                                        (B)
              0 – 10                          4                              4                          59
            10 − 20                        8                             12                       55
            20 − 30                       11                            23                       47
            30 − 40                       15                            38                       36
            40 − 50                       12                            50                       21
            50 − 60                        6                             56                          9
            60 − 70                        3                             59                        3
Draw a ‘more than’ ogive curve & a ‘less than’ ogive curve of the above data.
Daily income (in Rs)  | 
100 − 120  | 
120 − 140  | 
140 − 160  | 
160 − 180  | 
180 − 200  | 
Number of workers  | 
12  | 
14  | 
8  | 
6  | 
10  | 
Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.
Weight (in kg)  | 
Number of students  | 
Less than 38  | 
0  | 
Less than 40  | 
3  | 
Less than 42  | 
5  | 
Less than 44  | 
9  | 
Less than 46  | 
14  | 
Less than 48  | 
28  | 
Less than 50  | 
32  | 
Less than 52  | 
35  | 
Draw a less than type ogive for the given data. Hence obtain the median weight from the graph verify the result by using the formula.
Production yield (in kg/ha)  | 
50 − 55  | 
55 − 60  | 
60 − 65  | 
65 − 70  | 
70 − 75  | 
75 − 80  | 
Number of farms  |     
2  | 
8  | 
12  | 
24  | 
38  | 
16  | 
Change the distribution to a more than type distribution and draw ogive.
Length (in mm)  | 
Number or leaves fi  | 
118 − 126  | 
3  | 
127 − 135  | 
5  | 
136 − 144  | 
9  | 
145 − 153  | 
12  | 
154 − 162  | 
5  | 
163 − 171  | 
4  | 
172 − 180  | 
2  | 
Find  the median length of the leaves.
(Hint: The data needs to be converted to continuous classes for finding the  median, since the formula assumes continuous classes. The classes then change  to 117.5 − 126.5, 126.5 − 135.5… 171.5 − 180.5)
Class interval  | 
Frequency  | 
0 − 10  | 
5  | 
10 − 20  | 
x  | 
20 − 30  | 
20  | 
30 − 40  | 
15  | 
40 − 50  | 
y  | 
50 − 60  | 
5  | 
Total  | 
60  | 
Number of mangoes  | 
50 − 52  | 
53 − 55  | 
56 − 58  | 
59 − 61  | 
62 − 64  | 
Number of boxes  | 
15  | 
110  | 
135  | 
115  | 
25  | 
Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?
Prepared  By:
 Mr. Vijay Chawla
Email	[email protected]
9899114400