## TOPPER

## Mathematics

## Class $\mathbf{X}$

## TOPPER SAMPLE PAPER-1

1. All questions are compulsory.
2. The question paper consist of 30 questions divided into four sections A, B,C and D. Section A comprises of 10 questions of one mark each, section $B$ comprises of 5 questions of two marks each ,section C comprises of 10 questions of three marks each and section D comprises of 5 questions of six marks each.
3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
4. In question on construction, the drawing should be neat and exactly as per the given measurements.
5. Use of calculators is not permitted. You may ask for mathematical tables, if required.
6. There is no overall choice. However, internal choice has been provided in one question of 02 marks each, three questions of 03 marks each and two questions of 06 marks each. You have to attempt only one of the alternatives in all such questions.

## Section A

Q1 If HCF $(252,378)=126$, find their LCM.

Q2 Find the polynomial shown in the graph.

## SAMPLE PAPERS



Q3 For what value of ' $k$ ' will the equations $13 x+23 y-1=0$ and $k x-46 y-2=0$ represents intersecting lines?

Q4 $\mathrm{QM} \perp \mathrm{RP}$ and $P R^{2}-P Q^{2}=Q R^{2}$. If $\angle \mathrm{QPM}=30^{\circ}$, find $\angle \mathrm{MQR}$.


Q5 Find the length of $P N$ if $O M=9 \mathrm{~cm}$.


## TOPPER

Q6 If the median of a data which represents the weight of 150 students in a school is 45.5 kg , find the point of intersection of the less than and more than ogive curves.

Q7 If two coins are tossed simultaneously, find the probability of getting exactly two heads.

Q8 If three times the third term of an AP is four times the fourth term , find the seventh term.

Q9 If $\sin \alpha+\cos \alpha=\sqrt{2} \cos (90-\alpha)$, find $\cot \alpha$.

Q10 Find the perimeter of the figure, where $A C$ is the diameter of the semi circle and $A B \perp B C$


## SECTION B

Q11 $A$ and $B$ are points $(1,2)$ and $(4,5)$. Find the coordinates of a point $P$ on $A B$ if $A P=\frac{2}{5} A B$.

Q12 $\triangle A B C$ is right angled at $C$. Let $B C=a, A B=c$ and $A C=b . p$ is the length of the perpendicular from $C$ to $A B$. Prove that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Q13 Solve for $x$ and $y: 3(2 x+y)=7 x y, 3(x+3 y)=11 x y$

Q14 Find the probability of getting 5 Wednesdays in the month of August.

Q15
If $\sin (A+B)=1$ and $\cos (A-B)=\frac{\sqrt{3}}{2}, 0 \leq A+B \leq 90^{\circ}, A>B$, find $A$ and $B$.

OR
If $\tan A=\frac{7}{24}$, evaluate $\sqrt{\frac{1-\cos A}{1+\cos A}}$

## SECTION C

Q16
Prove that $\sqrt{5}$ is an irrational number.

Q17 Find the coordinates of a point(s) whose distance from $(0,5)$ is 5 units and from ( 0,1 ) is 3 units.

Q18
Prove $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=\tan ^{2} A+\cot ^{2} A+7$

> OR

Prove $(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2$
Q19 Solve for x and $\mathrm{y}: \frac{10}{x+y}+\frac{4}{y-x}=-2, \frac{15}{x+y}-\frac{7}{y-x}=10, \quad x+y \neq 0, x \neq y$ OR
For what values of ' $m$ ' will $2 m x^{2}-2(1+2 m) x+(3+2 m)=0$ have real and

## TOPPER

distinct roots?

Q20 Find the area of a triangle whose sides have $(10,5),(8,5)$ and $(6,6)$ as the midpoints.

Q21 If $\alpha, \beta$ are the zeroes of the polynomial $3 x^{2}-11 x+14$, find the value of $\alpha^{2}+\beta^{2}$.

Q22 Prove that a parallelogram circumscribing a circle is a rhombus.
OR
Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Q23 Draw a circle of radius 3.5 cm . Construct two tangents to the circle which are inclined to each other at $120^{\circ}$.

Q24 A grassy plot is in the form of a triangle with sides $45 \mathrm{~m}, 32 \mathrm{~m}$ and 35 m . One horse is tied at each vertex of the plot with a rope of length 14 m . Find the area grazed by the three horses.
Q25 The $46^{\text {th }}$ term of an AP is 25 . Find the sum of first 91 terms.

## SECTION D

Q26 Prove that ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
Using this theorem find the ratio of the area of the triangle drawn on the diagonal of a square and the triangle drawn on one side of the square.

OR
State and prove the Basic Proportionality Theorem. If PQ II BC, find

PQ.


Q27 The area of a rectangle remains the same if the length is increased by 7 m and the breadth is decreased by 3 m . The area of the rectangle remains the same if the length is decreased by 7 m and the breadth is increased by 5 m . Find the dimensions of the rectangle and the area of the rectangle.

Q28 A boy is standing on the ground and flying a kite with a string of 150 m at an angle of $30^{\circ}$. Another boy is standing on the roof of a 25 m high building and flying a kite at an angle of $45^{\circ}$. Both boys are on the opposite sides of the kites. Find the length of the string the second boy must have so that the two kites meet.

OR
At a point on level ground, the angle of elevation of a vertical tower is such that its tangent is $\frac{5}{12}$. On walking 192 m towards the tower, the tangent of the angle of elevation is $\frac{3}{4}$. Find the height of the tower.

Q29 A solid consists of a cylinder with a cone on one end and a hemisphere on the other end. If the length of the entire solid is 12.8 cm and the diameter and height of the cylinder are 7 cm and 6.5 cm respectively, find the total surface area of the solid.

## SAMPLE PAPERS

Q30 Draw a less than ogive of the following data and find the median from the graph. Verify the result by using the formula.

| Marks | Less <br> than <br> 140 | Less <br> than <br> 145 | Less <br> than <br> 150 | Less <br> than <br> 155 | Less <br> than <br> 160 | than <br> 165 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of <br> girls | 4 | 11 | 29 | 40 | 46 | 51 |

## TOPPER

## Mathematics

## Class X

## TOPPER SAMPLE PAPER-1

## SOLUTIONS

Ans1 HCF $\times$ LCM $=$ Product of the 2 numbers
$126 \times$ LCM $=252 \times 378$

$$
\begin{equation*}
\text { LCM }=756 \tag{1Mark}
\end{equation*}
$$

Ans2 The zeroes are -1, 4

$$
\begin{equation*}
\therefore \quad p(x)=(x+1)(x-4)=x^{2}-3 x-4 \tag{1Mark}
\end{equation*}
$$

Ans3 For intersecting lines:

$$
\begin{align*}
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} & \Rightarrow \frac{13}{k} \neq \frac{23}{-46}  \tag{1Mark}\\
& \Rightarrow k \neq-26
\end{align*}
$$

Ans4


Since $P R^{2}-P Q^{2}=Q R^{2}$
$\Rightarrow P R^{2}=Q R^{2}+P Q^{2}$
$\Rightarrow \angle \mathrm{RQP}=90^{\circ}$ (Converse of Pythagoras Theorem)
Therefore, In $\triangle \mathrm{PQM}$
Since $\angle \mathrm{QPM}=30^{\circ}$ and $\angle \mathrm{QMP}=90^{\circ}$
So $\angle M Q P=60^{\circ}$
Hence, $\angle \mathrm{MQR}=30^{\circ}$

## TOPPER

## SAMPLE PAPERS

Ans5


$$
\begin{aligned}
& \mathrm{OM}=\mathrm{MQ}+\mathrm{QO} \\
&=\mathrm{QP}+\mathrm{QN} \quad \text { [Since Tangents from external point are equal] } \\
&=\mathrm{PN}=9 \mathrm{~cm} \\
& \text { (1 Mark) }
\end{aligned}
$$

Ans6 The two curves namely less than and more than ogives intersect at the median so the point of intersection is $(45.5,75)$
(1 Mark)
Ans7 Total outcomes $=\mathrm{HH}, \mathrm{TT}, \mathrm{HT}, \mathrm{TH}$
Favourable outcomes $=\mathrm{HH}$
$P(E:$ Both Heads $)=\frac{1}{4}$
Ans8 Let $a_{3}$ and $a_{4}$ be the third and fourth term of the AP According to given Condition
3. $a_{3}=4 . a_{4}$
$\Rightarrow 3(a+2 d)=4(a+3 d)$
$\Rightarrow a=-6 d$
$\Rightarrow a+6 d=0$
$\Rightarrow a_{7}=0$

Ans9 $\quad \sin \alpha+\cos \alpha=\sqrt{2} \sin \alpha$
$\cos \alpha=\sin \alpha(\sqrt{2}-1)$
$\frac{\cos \alpha}{\sin \alpha}=\sqrt{2}-1$
(1 Mark)
$\cot \alpha=\sqrt{2}-1$
Ans10


$$
\begin{aligned}
A C & =\sqrt{A B^{2}+B C^{2}} \quad(\text { Using Pythagoras Theorem }) \\
& =\sqrt{8^{2}+6^{2}} \\
& =\sqrt{64+36} \\
& =10 \mathrm{~cm}
\end{aligned}
$$

Circumference of semi circle $=\pi r$

$$
\begin{aligned}
& =3.14 \times 5 \\
& =15.70 \mathrm{~cm}
\end{aligned}
$$

$\therefore$ Perimeter $=6+8+15.7$
(1 Mark)
$=29.7 \mathrm{~cm}$

## SAMPLE PAPERS

## SECTION B

Ans11 Since, $A P=\frac{2}{5} A B$
So $A P: P B=2: 3$

| 2 | $\vdots$ | 3 |
| :---: | :---: | :---: |
| $\mathrm{~A}(1,2)$ | P | $\mathrm{B}(4,5)$ |

$P$ divides $A B$ in 2:3 ratios
(1 mark)
$P\left(\frac{2 \times 4+3 \times 1}{5}, \frac{2 \times 5+3 \times 2}{5}\right)$
$\left(\frac{1}{2}\right.$ mark $)$
$P\left(\frac{11}{5}, \frac{16}{5}\right)$
$\left(\frac{1}{2}\right.$ mark $)$

Ans12


$$
\text { Area } \begin{aligned}
(\triangle A C B) & =\frac{1}{2} A C \cdot C B \\
& =\frac{1}{2} a \cdot b
\end{aligned}
$$

Also, area $(\triangle A C B)=\frac{1}{2} . A B . C D$ $\left(\frac{1}{2}\right.$ mark $)$

$$
=\frac{1}{2} c p
$$

$$
\begin{aligned}
& \Rightarrow \quad \begin{aligned}
& \Rightarrow \quad \frac{1}{2} a b=\frac{1}{2} c p \\
& \Rightarrow \quad a b=c p
\end{aligned} \\
& \begin{array}{rlr}
\text { Now } \frac{1}{a^{2}}+\frac{1}{b^{2}} & =\frac{b^{2}+a^{2}}{a^{2} b^{2}} \\
& =\frac{c^{2}}{a^{2} b^{2}} \\
& =\frac{c^{2}}{a^{2} b^{2}} \\
& =\frac{c^{2}}{c^{2} p^{2}} \\
& =\frac{1}{p^{2}} & \quad \text { (By Pythagoras theorem) }
\end{array}
\end{aligned}
$$

$$
\left(\frac{1}{2} \operatorname{mark}\right)
$$

Hence Proved

Ans13 $3(2 x+y)=7 x y \quad \Rightarrow \quad 6 x+3 y=7 x y$
$3(x+3 y)=11 x y \quad \Rightarrow \quad 3 x+9 y=11 x y$
$\mathrm{Eq}(2) \times 2$ gives : $\quad 6 x+18 y=22 x y$
When $x \neq 0$ and $y \neq 0$ eq(1) -eq(3) gives

$$
\begin{array}{ll}
-15 y=-15 \text { xy } & \left(\frac{1}{2} \text { mark }\right) \\
\Rightarrow \quad x=1 & \left(\frac{1}{2} \text { mark }\right) \\
\Rightarrow \quad y=\frac{3}{2} & \left(\frac{1}{2} \text { mark }\right) \\
\text { Also } x=0, y=0 \text { is a solution. } & \left(\frac{1}{2} \text { mark }\right)
\end{array}
$$

Ans14 August has 31 days
$\Rightarrow 4$ weeks and 3 days.
So 4 weeks means 4 Wednesdays
Now remaining 3 days can be
$\begin{array}{lllll}\text { S M T } & \text { T W Th } & \text { Th F Sa } & \text { Sa. S M } & \text { (1 Mark) } \\ \text { M T W } & \text { W Th F } & \text { F Sa S } & & \end{array}$

Favorable outcomes are = M T W
T W Th
$\left(\frac{1}{2}\right.$ mark $)$
W Th F
$\therefore \mathrm{P}(3$ Wednesdays $)=\frac{3}{7}$

$$
\left(\frac{1}{2} \operatorname{mark}\right)
$$

Ans15 $\sin (A+B)=1$
Since $\sin 90^{\circ}=1$
$A+B=90^{\circ}$
$\left(\frac{1}{2}\right.$ mark $)$
$\cos (A-B)=\frac{\sqrt{3}}{2}$
since $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$A-B=30^{\circ}$

$$
\begin{equation*}
\left(\frac{1}{2} \text { mark }\right) \tag{2}
\end{equation*}
$$

Solving (1) and (2)
$A=60^{\circ}$
$\left(\frac{1}{2}\right.$ mark $)$
$B=30^{\circ}$
$\left(\frac{1}{2}\right.$ mark $)$
OR

## $\tan A=\frac{7}{24}$

So the ratio of adjacent and opposite side of the triangle is in the ratio 7:24
Let the common ratio term be $k$


Using Pythagoras Theorem
$A C=25 k$.
Consider $\sqrt{\frac{1-\cos A}{1+\cos A}}$

$$
\begin{align*}
& =\sqrt{\frac{1-\frac{24}{25}}{1+\frac{24}{25}}}  \tag{1Mark}\\
& =\sqrt{\frac{1}{49}}=\frac{1}{7}
\end{align*}
$$

SECTION C

Ans16 Let us assume $\sqrt{5}$ is rational.
$\Rightarrow \sqrt{5}=\frac{p}{q}$ Where p and q are co prime integers and $q \neq 0$
$\left(\frac{1}{2}\right.$ mark $)$
$\Rightarrow \quad \sqrt{5} q=p$
$\Rightarrow \quad 5 q^{2}=p^{2}$
$\Rightarrow \quad 5$ divides $p^{2}$
$\left(\frac{1}{2}\right.$ mark $)$
$\Rightarrow \quad 5$ divides $p$

So $p=5 a$ for some integer $a$

$$
\left(\frac{1}{2} \text { mark }\right)
$$

Substituting $p=5 a$ in $5 q^{2}=p^{2}$

$$
\begin{array}{ll} 
& 5 q^{2}=25 a^{2} \\
\Rightarrow & q^{2}=5 a^{2} \\
\Rightarrow & 5 \text { divides } q^{2} \\
\Rightarrow & 5 \text { divides } q \tag{2}
\end{array}
$$

From (1) \& (2) 5 is a common factor to $p$ and $q$ which contradicts the fact that $P$ and $q$ are co prime
$\therefore$ Our assumption is wrong and hence $\sqrt{5}$ is irrational. $\left(\frac{1}{2}\right.$ mark $)$
Ans17 Let $A(x, y)$ be the required point which is at a distance of 5 units from the point $P(0,5)$ and 3 units from $Q(0,1)$

$$
\text { So } A P=5 \text { and } A Q=3
$$

$$
\begin{array}{lll}
\Rightarrow & \sqrt{(x-0)^{2}+(y-5)^{2}}=5 & \left(\frac{1}{2} \text { mark }\right) \\
\Rightarrow & (x-0)^{2}+(y-5)^{2}=25 & \\
\Rightarrow \quad x^{2}+y^{2}-10 y=0 \quad \text { (1) } & \left(\frac{1}{2} \text { mark }\right)
\end{array}
$$

$\sqrt{(x-0)^{2}+(y-1)^{2}}=3$
$\left(\frac{1}{2}\right.$ mark $)$

$$
x^{2}+(y-1)^{2}=9
$$

$$
\begin{equation*}
x^{2}+y^{2}-2 y-8=0 \tag{2}
\end{equation*}
$$

$\left(\frac{1}{2}\right.$ mark $)$
Equation (1) - Equation (2) gives:
$-8 y+8=0 \Rightarrow y=1$

Substituting $y=1$ in (1)

$$
x^{2}-9=0 \Rightarrow x= \pm 3
$$

$\therefore$ The required points are $(3,1)$ and $(-3,1) \quad\left(\frac{1}{2}\right.$ mark $)$

Ans18 $\quad(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$

$$
\begin{array}{rlr}
= & \sin ^{2} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~A}+2 \sin \mathrm{~A} \operatorname{cosec} \mathrm{~A}+\cos ^{2} \mathrm{~A} & \left(\frac{1}{2} \text { mark }\right) \\
& +\sec ^{2} \mathrm{~A}+2 \cos \mathrm{Asec} \mathrm{~A} & \\
= & \left(\sin ^{2} A+\cos ^{2} A\right)+2+2+\operatorname{cosec}^{2} A+\sec ^{2} & \\
& \quad(\text { Since } \sin \mathrm{A} \cdot \operatorname{cosec} \mathrm{~A}=1 \text { and } \cos \mathrm{A} \cdot \sec \mathrm{~A}=1) & \quad(1 \text { Mark }) \\
= & 1+2+2+1+\cot ^{2} A+1+\tan ^{2} A & (1 \text { Mark }) \\
& \quad\left(\text { Since, } \operatorname{cosec}^{2} A=1+\cot ^{2} A \text { and } \sec ^{2} A=1+\tan ^{2} A\right)  \tag{1Mark}\\
= & 7+\cot ^{2} A+\tan ^{2} A & \left(\frac{1}{2} \text { mark }\right) \\
= & \text { RHS }
\end{array}
$$

OR

$$
\begin{array}{ll}
(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta) & \left(\frac{1}{2} \text { mark }\right) \\
=\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right) & \left(\frac{1}{2} \text { mark }\right) \\
=\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right) & \left(\frac{1}{2} \text { mark }\right) \\
=\frac{\left(\sin \theta+\cos ^{2} \theta\right)-(1)^{2}}{\sin \theta \cos \theta} & \left(\frac{1}{2} \text { mark }\right) \\
=\frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} & \left(\frac{1}{2} \text { mark }\right) \\
=\frac{1+2 \sin \theta \cos \theta-1}{\sin \cos \theta} &
\end{array}
$$

$$
=\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2
$$

$\left(\frac{1}{2}\right.$ mark $)$
Ans19 Let $\frac{1}{x+y}=a, \frac{1}{y-x}=b$

$$
\begin{array}{ll}
10 a+4 b=-2 & \rightarrow \\
15 a-7 b=10 & \rightarrow \tag{2}
\end{array}
$$

(1) $\times 3$ and $(2) \times 2$ gives
$30 a+12 b=-6$
$\frac{36 a-14 b=20}{26 b=-26}$

$$
\Rightarrow b=-1
$$

Substituting $\mathrm{b}=-1$ in
(1):
$10 A-4=-2$
$\Rightarrow 10 a=2$
$\left(\frac{1}{2}\right.$ mark $)$
$\Rightarrow a=\frac{1}{5}$
$\therefore \quad x+y=5$
$\frac{-x+y=-1}{2 y=4} \Rightarrow y=2$ $\therefore x=3$
(1 mark)

OR

For real and distinct roots:
D>0
$\left(\frac{1}{2}\right.$ mark $)$
Discriminant $D=b^{2}-4 a c$

$$
\begin{aligned}
& {[-2(1+2 m)]^{2}-4(2 m)(3+2 m)>0} \\
& 4(1+2 m)^{2}-4(2 m)(3+2 m)>0
\end{aligned}
$$

$$
\begin{array}{ll}
1+4 m m^{2}+4 m-6 m-4 m m^{2}>0 & \left(\frac{1}{2} \text { mark }\right) \\
& \\
1-2 m>0 & \left(\frac{1}{2} \text { mark }\right) \\
\Rightarrow \quad 1>2 m & \\
\Rightarrow \quad \frac{1}{2}>m & \\
\Rightarrow \quad m<\frac{1}{2} & \text { (1 mark) }
\end{array}
$$

Ans20

(1 mark)
We know that area of triangle formed by joining the midpoint of sides of a triangle is $\frac{1}{4}$ th the area of the triangle.

$$
\begin{array}{rlr}
\operatorname{ar}(\triangle \mathrm{PQR}) & =\frac{1}{4}(\operatorname{ar} \Delta \mathrm{ABC}) & \left(\frac{1}{2} \text { mark }\right) \\
\begin{array}{rlr}
\operatorname{ar}(\triangle \mathrm{PQR}) & =\frac{1}{2}[10(6-5)+6(5-5)+8(5-6)] & \\
& =\frac{1}{2}[10-8] & \text { mark }) \\
& =1 \text { sq unit } & \left(\frac{1}{2} \text { mark }\right)
\end{array} \\
\text { So ar }(\triangle \mathrm{ABC})=4 \text { sq unit } &
\end{array}
$$

Ans21 $3 x^{2}-11 x+14$

$$
\begin{array}{rlrl}
\alpha+\beta & =\frac{11}{3}, \alpha \beta=\frac{14}{3} & & \text { (1 mark) } \\
\alpha+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta & & \left(\frac{1}{2} \text { mark }\right)  \tag{1mark}\\
& =\left(\frac{11}{3}\right)^{2}-2\left(\frac{14}{3}\right) & & \left(\frac{1}{2} \text { mark }\right) \\
& =\frac{121}{9}-\frac{28}{3} &
\end{array}
$$

Ans22 We know that tangents drawn from an external point are equal.


$$
\begin{array}{lll}
\therefore \quad & \text { Let } A P=A Q=a & \\
& B P=B S=b \\
& C S=C R=C & \left(\frac{1}{2} \text { mark }\right) \\
& D Q=D R=d &
\end{array}
$$

Since $A B C D$ is a parallelogram, opposite sides are equal.

$$
\begin{aligned}
& \not a+b=\not b+d \\
& \underline{a}+d=\not b+b
\end{aligned}
$$

$$
\left(\frac{1}{2} \text { mark }\right)
$$

on subtracting, we get

$$
\left(\frac{1}{2} \text { mark }\right)
$$

Since adjacent sides are equal $A B C D$ is a rhombus. $\left(\frac{1}{2}\right.$ mark $)$

OR
We know that the two tangents drawn from an external point are equally inclined to the line joining the point and centre $\quad\left(\frac{1}{2}\right.$ mark)


$$
\left(\frac{1}{2} \text { mark }\right)
$$

$\therefore \quad$ Let $\angle O A P=\angle O A S=a \quad \angle O C Q=\angle O C R=c$

$$
\angle O B P=\angle O B Q=b \quad \angle O D R=\angle O D S=d
$$

$$
\left(\frac{1}{2} \text { mark }\right)
$$

In $\triangle A O B: a+b+x=180^{\circ}$
In $\triangle C O D: c+d+y=180^{\circ}$
$\left(\frac{1}{2}\right.$ mark $)$

On adding $a+b+c+d+x+y=360$ $\left(\frac{1}{2}\right.$ mark $)$

$$
\Rightarrow \quad 180+x+y=360
$$

(Using angle sum property of quadrilateral $2 \mathrm{a}+2 \mathrm{~b}+2 \mathrm{c}+2 \mathrm{~d}=360$ )

$$
\begin{aligned}
& b-d=d-b \\
& \Rightarrow \quad 2 b=2 d \\
& \Rightarrow \quad b=d \\
& \therefore \quad A B=a+b \\
& =a+d \\
& =A D
\end{aligned}
$$

## TOPPER

## SAMPLE PAPERS

So $x+y=180^{\circ}$
Hence proved.

| Ans23 | Construction of circle and 2 radii $\mathrm{OA}, \mathrm{OB}$ at an angle of $60^{\circ}$ <br> Construction of tangents through the points on the circle$(2$ mark) |
| :--- | :--- | :--- |
| (2 marks) |  |



Ans24 Let the angles of triangle be $x, y, z$.


Area grazed by the three horses

$$
\begin{array}{ll}
=\frac{x}{360} \pi r^{2}+\frac{y}{360} \pi r^{2}+\frac{z}{360} \pi r^{2} & (1 \text { mark }) \\
=\frac{\pi r^{2}}{360}(x+y+z) & \left(\frac{1}{2} \text { mark }\right)
\end{array}
$$

$$
\begin{aligned}
= & \frac{\pi r^{2}}{360} \times 180 \\
& =\frac{22}{\not 7} \times 14 \times 14 \times \frac{1}{\not 2} \\
& =308 \mathrm{~m}^{2}
\end{aligned}
$$

$\left(\frac{1}{2}\right.$ mark $)$
$\left(\frac{1}{2}\right.$ mark $)$
$\left(\frac{1}{2}\right.$ mark $)$

Ans25

$$
\begin{aligned}
& a_{46}=25 \\
& \Rightarrow a+45 d=25 \\
& S_{91}=\frac{91}{2}[2 a+90 d] \\
&=91(a+45 d) \\
&=91 \times 25 \\
&=2275
\end{aligned}
$$

$\left(\frac{1}{2}\right.$ mark $)$
(1mark)
$\left(\frac{1}{2}\right.$ mark $)$ $\left(\frac{1}{2}\right.$ mark $)$
$\left(\frac{1}{2}\right.$ mark $)$

## Section D

Ans26 Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$


To Prove: $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}$
Construction: Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{EF}$ Proof: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
(1mark)

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{EF} \times \mathrm{DN}}=\frac{\mathrm{BC}}{\mathrm{EF}} \cdot \frac{\mathrm{AM}}{\mathrm{DN}} \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[\text { Area of } \Delta=\frac{1}{2} \times \text { base } \times \text { corresponding altitude }\right]} \\
& \therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \quad \text {...(Given) } \\
& \therefore \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}} \quad \ldots \text { (Sides are proportional)...(ii) } \\
& \angle \mathrm{B}=\angle \mathrm{E} \quad . . .(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}) \\
& \left.\angle \mathrm{M}=\angle \mathrm{N} \quad \text {...(each } 90^{\circ}\right) \\
& \therefore \quad \triangle \mathrm{ABM} \sim \triangle \mathrm{DEN} \quad \text {...(AASimilarity) } \\
& \therefore \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AM}}{\mathrm{DN}} \quad \ldots \text { (iii) [Sides are proportional] }
\end{aligned}
$$

From (ii) and (iii), we have

$$
\begin{equation*}
\frac{\mathrm{BC}}{\mathrm{DE}}=\frac{\mathrm{AM}}{\mathrm{DN}} \tag{1mark}
\end{equation*}
$$

From (i) and (iv), we have

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{BC}}{\mathrm{EF}} \cdot \frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}
$$

Similarly, we can prove that

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}} \\
\therefore \quad & \frac{\operatorname{ar}(\Delta \mathrm{ABC})}{\operatorname{ar}(\Delta \mathrm{DEF})}=\frac{\mathbf{A B}^{2}}{\mathbf{D E}^{2}}=\frac{\mathbf{B C}^{2}}{\mathbf{E F}^{2}}=\frac{\mathbf{A C}^{2}}{\mathbf{D F}^{2}}
\end{aligned}
$$

(2 marks)

## TOPPER

## SAMPLE PAPERS


$\triangle \mathrm{BCQ}$ and $\triangle \mathrm{ACP}$ are equilateral triangles and therefore similar.
(1 mark)

$$
A C^{2}=A B^{2}+B C^{2}=2 B C^{2} \quad(\text { By Pythagoras theorem }) \quad\left(\frac{1}{2} \text { mark }\right)
$$

Using the above theorem
$\frac{\text { area } \triangle A C P}{\text { area } \triangle B C Q}=\frac{A C^{2}}{B C^{2}}=\frac{2 B C^{2}}{B C^{2}}=2 \quad \quad\left(\frac{1}{2}\right.$ mark $)$
OR
Statement: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
(1 Mark)
Given: In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$

To prove: $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

## TOPPER

## SAMPLE PAPERS

Construction: Draw $\mathrm{EM} \perp \mathrm{AD}$ and $\mathrm{DN} \perp \mathrm{AE}$. Join B to E and C to D

(1 mark)

Proof: In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BDE}$

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EM}}{\frac{1}{2} \times \mathrm{DB} \times \mathrm{EM}}=\frac{\mathrm{AD}}{\mathrm{DB}} \tag{i}
\end{equation*}
$$

[Area of $\Delta=\frac{1}{2} \times$ base $\times$ corresponding altitude]

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{CDE}$

$$
\begin{align*}
& \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CDE})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DN}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DN}}=\frac{\mathrm{AE}}{\mathrm{EC}}  \tag{ii}\\
& \because \quad \mathrm{DE} \| \mathrm{BC} \\
& \therefore \quad \operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{CDE}) \tag{iii}
\end{align*}
$$

...(Given)

## SAMPLE PAPERS

( $\because \Delta \mathrm{s}$ on the same base and between the same parallel sides are equal in area)

From (i), (ii) and (iii)
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
(2 marks)


Since $P Q \| B C$
$\triangle A P Q \sim \triangle A B C$
(By AA condition) (1 mark)
$\therefore \quad \frac{A P}{A B}=\frac{P Q}{B C}$
$\Rightarrow \quad \frac{3}{9}=\frac{P Q}{11.4}$
$\Rightarrow \quad P Q=\frac{34.2}{9}=3.8 \mathrm{~cm}$

## SAMPLE PAPERS

Ans27 Let length of rectangle $=x \mathrm{~m}$
Breadth = y m

$$
\begin{align*}
& \text { Area }=x y m^{2} \text {. } \\
& \left(\frac{1}{2} \text { mark }\right) \\
& (x+7)(y-3)=x y \\
& \text { (1 mark) } \\
& \Rightarrow-3 x+7 y-21=0 \rightarrow(1) \\
& (x-7)(y+5)=x y \\
& \text { (1 mark) } \\
& 5 x-7 y-35=0 \quad \rightarrow \quad(2) \\
& \left(\frac{1}{2} \text { mark }\right) \\
& (1)+(2) \text { gives: } \\
& 2 x-56=0 \\
& \Rightarrow \quad x=28 m  \tag{1mark}\\
& \text { On substituting } x=28 \mathrm{~m} \text { in equation (2), we get } \mathrm{y}=15 \mathrm{~m}
\end{align*}
$$

The length is 28 m and the breadth is 15 m .
$\left(\frac{1}{2}\right.$ mark $)$
Therefore, area is $420 \mathrm{~m}^{2}$
(1 mark)

## SAMPLE PAPERS

Ans28
$A$ and $R$ are the positions of the two boys. $P$ is the point where the two kites meet

$$
\left(\frac{1}{2} \text { mark }\right)
$$



In $\triangle \mathrm{ABP}$
$\sin 30^{\circ}=\frac{P B}{A P}$
$\frac{1}{2}=\frac{P B}{150}$
$\left(1 \frac{1}{2}\right.$ mark $)$
$\Rightarrow \quad P B=75 m$
and $Q B=25 m$
$\Rightarrow P Q=50 m$

In $\triangle \mathrm{PQR}$
$\sin 45^{\circ}=\frac{P Q}{P R}$
$\frac{1}{\sqrt{2}}=\frac{50}{P R}$
$\left(1 \frac{1}{2}\right.$ mark $)$
$\Rightarrow 50 \sqrt{2}=P R$

## SAMPLE PAPERS

$\therefore$ The boy should have a string of length 70.7 m

OR

(1 mark)
$D$ is the initial point of observation and $C$ is the next point of observation.
$A B$ is the tower of height $h$. Let $B C=x$

$$
\begin{aligned}
& \tan \alpha=\frac{A B}{B D} \\
& \frac{5}{12}=\frac{h}{x+192} \\
& \Rightarrow 12 h-5 x-960=0 \quad \rightarrow(1)
\end{aligned}
$$

$$
\left(\frac{1}{2} \text { mark }\right)
$$

(1 mark)
$\tan p=\frac{A B}{B C}$
$\frac{3}{4}=\frac{h}{x}$
$\Rightarrow 3 x=4 h \rightarrow(2)$
(1 mark)
From (2): $12 h=9 x$ and substituting in (1):

$$
\begin{align*}
& 9 x-5 x=960 \\
& 4 x=960  \tag{1mark}\\
\Rightarrow \quad & x=240
\end{align*}
$$

$\therefore h=\frac{3 \times 240}{4}$ from (2)

$$
=180
$$

$\left(\frac{1}{2}\right.$ mark $)$
$\left(\frac{1}{2}\right.$ mark $)$

Ans29


Height of cone $=12.8-(6.5+3.5)$

$$
=2.8 \mathrm{c}
$$

(1 mark)

Slant height $l=\sqrt{(3.5)^{2}+(2.8)^{2}}$

$$
\begin{aligned}
& =\sqrt{12.25+7.84} \\
= & \sqrt{20.09} \\
= & 4.48
\end{aligned}
$$

$$
\left(1 \frac{1}{2} \text { mark }\right)
$$

$$
\begin{aligned}
T S A & =2 \pi r^{2}+2 \pi r h+\pi r l \\
& =\pi r(2 r+2 h+l)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{7}{2}(7+13+4.48) \\
& =11 \times 24.48 \\
& =269.28
\end{aligned}
$$

$\therefore$ The surface area of the solid is $269.28 \mathrm{~cm}^{2}$
(1 mark)
( $1 \frac{1}{2}$ mark)
( $\frac{1}{2}$ mark)

Ans30

| $C I$ | $f$ | $C . f$ |
| :--- | :---: | :---: |
| Less than 140 | 4 | 4 |
| $140-145$ | 7 | 11 |
| $145-150$ | 18 | 29 |
| $150-155$ | 11 | 40 |
| $155-160$ | 6 | 46 |
| $160-165$ | $\overline{5}$ | 51 |
|  | $\underline{51}$ |  |

(2 marks)


$$
n=51 \Rightarrow \frac{n}{2}=25.5
$$

$$
\text { Median class }=145-150
$$

$$
\text { Median }=l+\left(\frac{\frac{n}{2}-c f}{f}\right) h
$$

$$
=145+\left(\frac{25.5-11}{18}\right) 5
$$

$$
=145+\frac{14.5 \times 5}{18}
$$

$$
=145+\frac{72.5}{18}
$$

$$
=149.02
$$

