## THREE DIMENSIONAL CO-ORDINATE GEOMETRY

1.Find the equation of the plane through the points $(1,1,0),(1,6,5)$ and perpendicular to plane $5 x+3 y-17 z=0$.
2. Find the shortest distance between the lines $\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and

$$
\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}
$$

3. Find the shortest distance between the lines $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and

$$
\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} .
$$

4.Find the equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.
5. Find the equation of the plane that contains the point $(1,-1,2)$ and is perpendicular each of the planes $2 x+$ $3 y-2 z=5$ and $x+2 y-3 z=8$.
6. Find the distance of the point $(1,-1,2)$ and is perpendicular to each of the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.
7. Prove that the equation of the plane making intercepts $a, b, c$ on the co-ordinate axes ,is

$$
\text { of the form } \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \text {. }
$$

8. A variable plane moves so that sum of reciprocal of its intercepts on the three co-ordinate axes is constant . Show that it passes through a fixed point.
9. A variable plane which remain at a constant distance $3 p$ from origin cuts the co-ordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Show that the locus of the centroid of $\triangle A B C$ is $x^{-2}+y^{-2}+z^{-2}=p^{-2}$.
10. Find the image of the point $(1,0,0)$ with respect to the line $\frac{x+1}{-1}=\frac{y-2}{k}=\frac{z-5}{5}$ $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z+10}{8}$. Also find the perpendicular distance.
11. Prove that if a plane has the intercepts $a, b, c$ and is at a distance of $p$ units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.
12. For what value of ' k ' the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{k}=\frac{z-5}{5}$ are coplanar. Also, then find the equation of the plane containing them.

Prepared by:

## Mrinal Sarma

PGT, MATHS

Gurukul Grammar Senior Secondary School School,
Guwahati ,Assam.
Ph: 09864066569


