Test Paper

Time : 3 hours
Maximum Marks: 80

SECTION - A

1. State fundamental theorem of Arithmetic.
2. Find the sum and product of zeroes of $p(x)=\frac{1}{2} x^{2}-x+\frac{1}{3}$.
3. Find the value of ' \mathbf{p} ' if the quadratic equation $p x^{2}+4 x+1=0$ has repeated roots.
4. Find the discriminant of $4 x^{2}+4 \sqrt{3} x+3=0$
5. Find the $12^{\text {th }}$ term of: $-3,-\frac{1}{2}, 2, \ldots$
6. Express $\cot 85^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angle between 0° and 45°.
7. The length of a tangent from a point A at distance 5 cm from centre of the circle is 4 cm . Find the radius of circle.
8. Find the circumference of a sector of angle 60° of a circle with radius 10 cm .
9. 1000 tickets of lottery were sold and there are 5 prizes on these tickets. If Anshul has purchased a ticket, what is the probability of winning a prize?
10. $A B C$ and FDE are two equilateral triangles such that D is the midpoint of BC. Find the ratios of the areas of triangles ABC and FDE.

SECTION - B
11. Solve $x-3 y-7=0,3 x-3 y=15$.
12. Apply division algorithm to find the quotient and remainder obtained on dividing $p(x)$ by $g(x)$ where $p(x)=2 x^{2}+3 x+1, g(x)=2+x$.

OR
Find the zeroes of $3 x^{2}-x-4$ and verify the relationship between zeroes and coefficients.
13. Evaluate: $\frac{5 \sin ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+4 \tan ^{2} 60^{\circ}}{2 \sin 30^{\circ} \cdot \cos 60^{\circ+} \tan 45^{\circ}}$.
14. If A and B are $(4,3)$ and $(8,5)$ respectively. Find the coordinates of P such that $\mathrm{AP}=\frac{3}{4} \mathrm{AB}$.
15. The incircle of a triangle $A B C$ touches the sides $A B, B C$ and $C A$ at the points P, \mathbf{Q}, \mathbf{R} respectively. Show that:
$\mathrm{AP}+\mathrm{BQ}+\mathrm{CR}=\mathrm{PB}+\mathrm{QC}+\mathrm{RA}=\frac{1}{2}($ Perimeter of $\triangle \mathrm{ABC})$.

SECTION - C

16. Solve $2 x^{2}+14 x+9=0$, by completing the squares when
OR

The sum of n terms of an A.P. is $S_{n}=\frac{5 n^{2}}{2}+\frac{3 n}{2}$. Find its $20^{\text {th }}$ term.
17. Prove that the square of any positive integer is of the form $5 q, 5 q+1$ or $5 q+4$ for some integer q.
18. Prove the following identity:
$(1+\tan A \tan B)^{2}+(\tan A-\tan B)^{2}=\sec ^{2} A \cdot \sec ^{2} B$
19. Prove that the points $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ taken in order, form a rhombus. Also find its area.
20. Construct a triangle similar to a given triangle ABC such that each of its sides is $\frac{3}{4}^{\text {th }}$ of the corresponding sides of $\triangle \mathrm{ABC}$. It is given that $\mathbf{A B}=3 \mathrm{~cm}, \mathbf{B C}=4 \mathrm{~cm}$ and $\mathbf{C A}=5 \mathrm{~cm}$.
21. Show graphically that the system of equations $2 x+y=6,6 x+3 y=18$ has infinitely many solutions.
22. Find the coordinates of the point of trisection of the line segment joining $(4,-1)$ and $(-2,-3)$.
23. A piggy bank contains hundred 50 paise coins, fifty Rs. 1 coins, twenty Rs. 2 coins and ten Rs. 5 coins. If it is equally likely that one of the coins will fall out when the bank is turned upside down, what is the probability that the coin i) will be a fifty paise coin?
ii) will not be a fifty paise coin?
24. In the adjoining figure, ABC is a right triangle with $\angle \mathrm{ABC}=90^{\circ}, \mathrm{BD} \perp \mathrm{AC}$, $D M \perp B C$ and $D N \perp$ AB. (Fig 1) Prove that:
i) $\mathrm{DM}^{2}=\mathrm{DN} \times \mathrm{MC}$
ii) $\mathrm{DN}^{2}=\mathrm{DM} \times \mathrm{AN}$.

Fig 1

Fig 2.

OR
"If a line is drawn parallel to one side of a triangle intersecting the other two sides, then it divides the two sides in the same ratio", prove it.
25. Find the area of shaded region in the given figure, where $A B C D$ is a square of side 10 cm and semicircles are drawn with each side of the square as diameter. (Use $\pi=3 \cdot 14$) (Fig 2).

SECTION - D

26. The angle of elevation of a cloud from a point h metres above a lake is α and the angle of depression of its reflection in the lake is β. Prove that the distance of cloud from the point of observation is $\frac{2 \mathrm{~h} \sec \alpha}{\tan \beta-\tan \alpha}$.
27. State and prove the converse of pythagorus theorem:

In a isosceles triangle with $A B=A C$ if $2 A B^{2}=B C^{2}$, then prove that angle A right angle, using above theorem
28. Sum of the areas of two squares is $468 \mathrm{~m}^{2}$. If the difference of their perimeters is 24 cm , find the sides of the two squares.

OR
A takes 10 days less than the time taken by B to finish a piece of work. If both A and B together can finish the work in 12 days, find the time taken by B to finish the work alone.
29. An oil funnel made of tin sheet consists of a cylindrical portion 10 cm , long attached to a frustum of a cone. If the total height is 22 cm , diameter of the cylindrical portion is 8 cm and the diameter of the top of the funnel is 18 cm , find the area of the tin sheet required to make the funnel
30. The following table shows the ages of the patients admitted in a hospital during a year. Draw the ogive and find the median :

Age (in years) (more than)	Number of patients
5	80
15	74
25	63
35	42
45	19
55	5

> Tution for Maths and Commerce
> For IX , X , XI , XII
> C.B.S.E \& I.C.S.E. E-mail : madhav_gupta2006@yahoo.com

