CBSEGuess.com

CBSE Class $9^{\text {th }}$

Sample Paper

SECTION (MARKS - 1 each)

1. $(125)^{-1 / 3}$ can be written as (i) 5 (ii) -5 (iii) $1 / 5$ (iv) none.
2. Check whether the polynomial $g(t)=4 t^{3}+4 t^{2}-t-1$ is a multiple of $2 t+1$.
3. $\sqrt{7}$ is a polynomial of degree of \qquad
4. Prove that a line has one \& only one mid-point.
5. The perimeter of a triangular field is 540 m \& its sides are in the ratio $25: 17: 12$. Find the ar of the Δ.
6. The lengths of the sides of a triangle are $5 \mathrm{~cm}, 12 \mathrm{~cm}, \& 13 \mathrm{~cm}$. Find the length of the longer perpendicular.
7. If $a^{2}+b^{2}+c^{2}-a b-b c-c a$ equals (i) $(a+b+c)^{2}$ (ii) $(a-b-c)^{2}$ (iii) $(a-b+c)^{2}$ (iv)
$\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
8.

The height of equilateral triangle is 9 cm find the area.

$$
\text { SECTION -B.......... (MARKS - } 2 \text { each) }
$$

9. Find the value of ' x '

10. If $x=3+2 \sqrt{2}$, check whether $x+\frac{1}{x}$ rational or irrational.
11. Factorise : $\left(9 x^{2}-1\right)-(1+3 x)^{2}$.

CBSEGuess.com

12. In $(x+y)=8 \&\left(x^{2}+y^{2}\right)=48$, find the value of $\left(x^{3}+y^{3}\right)$.
13. Find the angle if five-times the complement is 24° less than twice of its supplement.
14. In a $\triangle \mathrm{ABC}, \frac{\angle A}{3}=\frac{\angle B}{4}=\frac{\angle C}{2}$ find the angles of Δ.

$$
\text { SECTION - C(MARKS - } 3 \text { each) }
$$

15. The base $B C$ of an equilateral triangle $A B C$ with side $B C=8$ units lie along x-axis such that the mid point of the base is at the origin. Find the coordinates of $B \& C$. Also find coordinates of third vertex A, if A lies along positive direction of y-axis.
16. $x+y+z=9, x y+y z+z x=28$ what is the value of $\sqrt{x^{2}+y^{2}+z^{2}}$.
17. Express $23.4 \overline{53}$ in the form p / q.
18. If $x^{2}-b x+c=(x+p)(x-q)$, then, factorise $x^{2}-b x y+c y^{2}$.
19. In the following figures find ' x ':

20. A teacher asked the students about their heights. Manoj said his height is same as that of Abhinav. Tarun also answered the same way, that its height is same as that of Abhinav. She then asked the students to relate the height of Manoj \& Tarun. Abhinav answered they both have same height. Is Abhinav correct ? If yes, state Euclid's axiom which supports the answer. Which value of Abhinav are depicted here. \{Ans : knowledge \& truthful\}
21. $P Q R S$ is a quadrilateral \& $T \& U$ are respectively points on $P S \& R S$ such that $P Q=R Q$, $\angle P Q T=\angle R Q U \& \angle T Q S=\angle U Q S$ Prove that $\mathrm{QT}=\mathrm{QU}$.

22. $\mathrm{RT}=\mathrm{TS}, \angle 1=2 \angle 2, \angle 4=2 \angle 3$. Prove that $\triangle R B T \cong \triangle S A T$.

23. If $a=\frac{5-\sqrt{21}}{2}$ prove that $\left(a^{3}+\frac{1}{a^{3}}\right)-5\left(a^{2}+\frac{1}{a^{2}}\right)+\left(a+\frac{1}{a}\right)=0$
24. If $\mathrm{xyz}=1$, show that $\frac{1}{1+x+y^{-1}}+\frac{1}{1+y+z^{-1}}+\frac{1}{1+z+x^{-1}}=1$
25. Find the square root of : (i) $9+4 \sqrt{3}-2 \sqrt{6}-4 \sqrt{2}$

$$
\text { SECTION - D.............. (MARKS - } 4 \text { each) }
$$

26. Find the values of $m \& n$ if remainder 29 is left when $x^{3}-m x^{2}-n x-3$ is divided by $x+2 \& x-3$ is factor of $x^{3}+x^{2}+m x+n$.
27. If $\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=3 \mathrm{abc}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ show that $\frac{(b+c)^{2}}{3 b c}+\frac{(c+a)^{2}}{3 a c}+\frac{(a+b)^{2}}{3 a b}=1$

CBSEGuess.com

28. $A B C D$ is a square, P is the mid-point of $A B$. $C P$ and $D P$ are joined. Prove that : (i) $\triangle A D P \cong \triangle B C P$ (ii) $\angle \mathrm{PCD}=\angle \mathrm{PDC}$

29. Plot the following points \& check whether the following points are collinear $(6,-2),(1,3),(-2,-4)$, \& $(-1,5)$
30. In the adjoining figure, $A B C D$ is a quadrilateral, in which $A B \| C D$ and P is the mid point of $B C$.

Produce AP and DC to meet at Q. Prove that (i) $A B=C Q$
(ii) $D Q=D C+A B$

31. pol If $\left(x^{2}-1\right)$ is a factor of $p x^{4}+q x^{3}+r x^{2}+s x+t$ prove that $p+r+t=q+s=0$.
32. The area of an isosceles Δ is $240 \mathrm{~cm}^{2}$. \& the length of one of the equal sides is 26 cm . find its base.

**********ALLTHEBEST***********

e-mail add : vishvas 1@ymail.com
Mob : 99-1515-1771
Please prefer to send querries on above e-mail id or on above said mobile number through whats app.
For answers please send your e-mail address.

NO PHONE CALLS PLEASE

