Sub : MATHEMATICS

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 29 questions divided into three sections - A, B and C. Section A comprises of 10 questions of 1 mark each; Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each.
(iii) Use of calculator is not permitted. You may ask for logarithmic tables if required.
(iv) Use of calculator is not permitted. You may ask for logarithmic tables if required

SECTION - A

1. Construct a 2×2 matrix, $A=\left[a_{i \mathrm{i}}\right]$, whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\frac{(\mathrm{i}-2 \mathrm{j})^{2}}{3}$.
2. Find the values of x, y and z where $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$
3. Evaluate : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
4. Find k if $f(x)=\left\{\begin{array}{ll}k x^{2} & , x \neq 0 \\ 5 & , x=2\end{array}\right.$ is continuous at $x=2$.
5. The total revenue from the sale of x units of a product is given by $R(x)=6 x^{2}+13 x+10$. Find the marginal revenue when $x=10$.
6. Evaluate : $\int \frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}} d x$
7. Evaluate : $\int_{0}^{1} \frac{2 x}{1+\mathrm{x}^{2}} \mathrm{dx}$
8. Find the distance of the point $(2,3,4)$ from the plane $\vec{r} .(3 \hat{i}-6 \hat{j}+2 \hat{k})=-11$.
9. If \vec{a} is a unit vector and $(\vec{x}+\vec{a})(\vec{x}-\vec{a})=15$, find $|\vec{x}|$.
10. Evaluate : $\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)$

SECTION - B

.11.Prove that $\cot ^{-1} \frac{a b+1}{a-b}+\cot ^{-1} \frac{b c+1}{b-c}+\cot ^{-1} \frac{c a+1}{c-a}=0$
12. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the pth, q th , rth terms of a G.P. , prove that $\left|\begin{array}{lll}\log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1\end{array}\right|=0$.

OR,

Without expanding prove that $\left|\begin{array}{ccc}x+y & x & x \\ 5 x+4 y & 4 x & 2 x \\ 10 x+8 y & 8 x & 3 x\end{array}\right|=x^{3}$
13. Differentiate $\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ w.r.t. $\sqrt{1-x^{2}}$.
14. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ related to each other. But no element of $\{1,3,5\}$ is not related to any element of $\{2,4\}$.
15. If $y=\tan x+\sec x$, prove that $\frac{d^{2} y}{d x^{2}}=\frac{\cos x}{(1-\sin x)^{2}}$.
16. Evaluate: $\int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x$.
17. Evaluate : $\int_{1}^{4} f(x) d x$ where $f(x)=\left\{\begin{array}{ll}2 x+8, & 1 \leq x \leq 2 \\ 6 x & , 2 \leq x \leq 4\end{array}\right.$.

OR,
Evaluate : $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} d x$
18. Find the direction cosines of two lines which are connected by the relations $|-5 m+3 n=0,7|^{2}+5 m^{2}-3 n^{2}=0$
19. Find the perpendicular distance of the point $(2,3,4)$ from the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.
20. Solve the differential equation $\frac{d y}{d x}+y \cot x=x^{2} \cot x+2 x$.

OR,
Solve the differential equation $\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec} \frac{y}{x}=0 ; y=0$ when $x=1$
21. A girl throws a die . If she gets 5 or 6 , she tosses a coin three times ,otherwise she tosses a coin once. If she obtained exactly one head , what is the probability that she threw $1,2,3$ or 4 with the die.
22. Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$, which is parallel to the line $4 x-2 y+5=0$.

SECTION - C

23. Find the product of matrices $A=\left[\begin{array}{ccc}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$ and use it to solve the equations

$$
x+y+2 z=1,3 x+2 y+z=7,2 x+y+3 z=2
$$

24. If length of three sides of trapezium other than base are equal to 10 cm ., then find the area of the trapezium when it is maximum.

OR,

Prove that radius of a right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.
25. A manufacturing company makes two models A and B of a product. Each piece of model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model B requires 12 labour hours for fabricating and 3 labour hour for finishing. For fabricating and finishing the maximum labour are available are 180 and 30 respectively. The company makes a profit of Rs. 8000 on each piece of model A and model B should be manufactured per week to realize a maximum profit . What is the maximum profit per week.
26. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$.
27. An urn contains 25 balls of which 10 balls bears a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn ,its mark is noted down and is replaced. If 6 balls are drawn in this way, find the probability that
(i) all will bear ' X ' mark.
(ii) not more than 2 will bear ' Y ' mark.
(iii) at least one ball will bear ' γ ' mark
(iv) the no. of balls with ' X ' mark and ' Y ' mark will be equal.
28. Integrate : $\int \frac{d x}{x^{4}+3 x^{2}+1}$
29. Find the length and the equation of the line of shortest distance between the lines $\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$ and $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}$.

Submilted by

Mrinal Sarma

PGT,Gurukul Grammar Senior Secondary School ,Guwahati, Assam
Ph. 09864066569

