KENDRIYA VIDYALAYA GACHIBOWLI, HYDERABAD SAMPLE PAPER 01 : PERIODIC TEST – 1 (2019 – 20) CLASS – XI MATHEMATICS

T.T. 1:30

M.M. 40

General Instructions:

1. All questions are compulsory.

2. Question paper is divided into four sections: Section A contains 10 Objective type questions each carry 1 mark, Section B contains 3 questions each carry 2 marks, Section C contains 3 questions each carry 4 marks and Section D contains 2 questions each carry 6 marks.

SECTION – A(1 mark each)

1.	In a town of 840 pers Then the number of p (a) 210	sons, 450 persons rea persons who read nei (b) 290	d Hindi, 300 read En ther is (c) 180	glish and 200 read both. (d) 260
				· · ·
2.	The set (A U B U C) (a) $B \cap C'$	$ \bigcap (A \cap B' \cap C')' \cap C' $ (b) A $\cap C$	C' is equal to (c) B U C'	(d) $A \cap C'$
3.	Let $n(A) = m$, and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is			
	(a) m ⁿ	(b) $n^m - 1$	(c) $m^{n} - 1$	(d) $2^{mn} - 1$
4.	If $[x]^2 - 5 [x] + 6 = 0$ (a) $x \in [3, 4]$	where [.] denote the (b) $x \in (2, 3]$	he greatest integer function (c) $x \in [2, 3]$	nction, then (d) $x \in [2, 4)$
5.	Two finite sets have m and n elements respectively. The total number of subsets of first set is 56 more than the total number of subsets of the second set. The values of m and n respectively are			
	(a) 7, 6	(b) 5, 1	(c) 6, 3	(d) 8, 7
6.	If f (x) = ax + b, where a and b are integers, f (-1) = -5 and f (3) = 3, then a and b are equal to			
	(a) $a = -3, b = -1$	(b) $a = 2, b = -3$	(c) $a = 0, b = 2$	(d) $a = 2, b = 3$
7.	The greatest value of sin x cos x is			
	(a) 1	(b) 2	(c) $\sqrt{2}$	(d) $\frac{1}{2}$
0				
8.	If $\sin \theta + \csc \theta = 2$ (a) 1	(b) 4 (b) 4	(c) 2 (c) 2	(d) None of these
~	2 2 2			
9.	If $f(x) = \cos^2 x + \sec^2 (a) f(x) < 1$	(b) $f(x) = 1$	(c) $2 < f(x) < 1$	(d) $f(x) \ge 2$
10.	If $\tan \theta = 3$ and θ lies in third quadrant, then the value of $\sin \theta$ is			
	(a) 1	(h) 1	(a) 3	(1) 3
	(a) $\overline{\sqrt{10}}$	(b) $-\frac{1}{\sqrt{10}}$	(c) $-\frac{1}{\sqrt{10}}$	(a) $\overline{\sqrt{10}}$

Prepared by: M. S. KumarSwamy, TGT(Maths)

SECTION – B(2 marks each)

11. Find the domain for which the functions $f(x) = 2x^2 - 1$ and g(x) = 1 - 3x are equal.

12. Prove that: $\frac{\cos 7x + \cos 5x}{\sin 7x - \sin 5x} = \cot x$

13. If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} and B = { 2, 3, 5, 7}. Verify that (A U B)' = A' \cap B'

SECTION – C(4 marks each)

- 14. If f and g are two real valued functions defined as f(x) = 2x + 1, $g(x) = x^2 + 1$, then find (i) f + g (ii) f - g (iii) fg (iv) $\frac{f}{g}$
- **15.** Solve $\sin 2x \sin 4x + \sin 6x = 0$.
- 16. Show that: $\cos 6x = 32 \cos^6 x 48 \cos^4 x + 18 \cos^2 x 1$

SECTION – D(6 marks each)

17. Prove the following by using the principle of mathematical induction for all $n \in N$:

 $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$

- **18.** In a survey of 60 people, it was found that 25 people read newspaper H, 26 read newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T, 8 read both T and I, 3 read all three newspapers. Find:
 - (i) the number of people who read at least one of the newspapers.
 - (ii) the number of people who read exactly one newspaper.
 - (iii) the number of people who read exactly two newspaper.