KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32 SAMPLE PAPER 01 FOR PERIODIC TEST II EXAM (2019-20)

SUBJECT: MATHEMATICS(041)

Chapter	MCQ (1 mark)	VSA (1 mark)	SA – I (2 marks)	SA – II (3 marks)	LA (4 marks)	Total
Number System	1(1)	2(2)	2(1)	3(1)*	4(1)	12(6)
Polynomials	2(2)	2(2)	2(1)	3(1)	4(1)*	13(7)
Coordinate Geometry	2(2)	1(1)		3(1)	4(1)	10(5)
Linear Equation in two variables	1(1)	2(2)	2(1)*	3(1)	4(1)	12(6)
Lines and Angles	2(2)	1(1)	2(1)*	6(2)		11(6)
Triangles	1(1)	1(1)	2(1)	3(1)	4(1)*	11(5)
Quadrilaterals	1(1)	1(1)	2(1)	3(1)*	4(1)	11(5)
Total	10(10)	10(10)	12(6)	24(8)	24(6)	80(40)

BLUE PRINT FOR PERIODIC TEST - II: CLASS IX

MARKING SCHEME FOR PERIODIC TEST - II

SECTION	MARKS	NO. OF QUESTIONS	TOTAL
MCQ	1	10	10
VSA	1	10	10
SA – I	2	6	12
SA – II	3	8	24
LA	4	6	24
	80		

KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32 SAMPLE PAPER 01 FOR PERIODIC TEST II EXAM (2019-20)

SUBJECT: MATHEMATICS	MAX. MARKS : 80
CLASS : IX	DURATION : 3 HRS

General Instructions:

- (i). All questions are compulsory.
- (ii). This question paper contains 40 questions divided into four Sections A, B, C and D.
- (iii). Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
- (iv). There is no overall choice. However, an internal choice has been provided in two questions of 2 marks each, two questions of 3 marks each and two questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v). Use of Calculators is not permitted

<u>SECTION – A</u> Questions 1 to 20 carry 1 mark each.

- 1. Three angles of a quadrilateral are 75^{0} , 90^{0} and 75^{0} . The fourth angle is (a) 90^{0} (b) 95^{0} (c) 105^{0} (d) 120^{0}
- 2. In a triangle ABC, if $\angle A + \angle B = 65^{\circ}$ and $\angle B + \angle C = 140^{\circ}$, then the measure of $\angle B$ is (a) 40° (b) 25° c) 115° (d) 60°
- 3. Two lines PQ and RS intersect at O. If $\angle POR = 50^{\circ}$, then value of $\angle ROQ$ is (a) 120° (b) 130° c) 90° (d) 150°

- 4. Two adjacent angles on a straight line are in the ratio 5 : 4. then the measure of each one of these angles are
 (a) 100⁰ and 80⁰
 (b) 75⁰ and 105⁰
 (c) 90⁰ and 90⁰
 (d) 60⁰ and 120⁰
- 5. If (2, 0) is a solution of the linear equation 2x + 3y = k, then the value of k is (a) 4 (b) 6 (c) 5 (d) 2
- 6. The value of $125^{\frac{-1}{3}}$ is : (a) $\frac{1}{5}$ (b) $\frac{1}{25}$ (c) $\frac{1}{15}$ (d) $\frac{1}{125}$
- 7. The zero of p(x) = 9x + 4 is:

(a) $\frac{4}{9}$ (b) $\frac{9}{4}$ (c) $\frac{-4}{9}$ (d) $\frac{-9}{4}$ 8. If x + 2 is a factor of x³ + 2ax² +ax - 1 then the value of a is: (a) $\frac{2}{3}$ (b) $\frac{3}{5}$ (c) $\frac{3}{2}$ (d) $\frac{1}{2}$ 9. The coordinates of the point lying on the negative side of x-axis at a distance of 5 units from origin are

(a) (0, 5) (b) (0, -5) (c) (-5, 0) (d) (5, 0)

10. The distance of the (4, -3) from x – axis is (a) 3 units (b) –3 units (c) 4 units

(d) 5 units

- **11.** Rationalize the denominator of $\frac{3-\sqrt{2}}{3+\sqrt{2}}$.
- **12.** Find the value of $(81)^{0.16} \times (81)^{0.09}$.
- **13.** Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.
- **14.** Express 2x = 5y in the form ax + by + c = 0
- **15.** One of the angles of a triangle is 50° and the other two angles are equal. Find the measure of each of the equal angles.
- 16. If x + 6 is a factor of $p(x) = x^3 + 3x^2 + 4x + k$, find the value of k.
- **17.** In the given figure, $p \mid \mid q$. Find the value of x.

- **18.** Without actually calculating the cubes, find the value of $(-12)^3 + (7)^3 + (5)^3$
- **19.** Diagonals AC and BD of parallelogram ABCD intersect at O. If $\angle BOC = 90^{\circ}$ and $\angle BDC = 50^{\circ}$, find $\angle OAB$.
- 20. Write the coordinates of the point lying on x-axis and with x-coordinate 4.

<u>SECTION – B</u> Questions 21 to 26 carry 2 marks each.

- **21.** Show that 1.272727..... can be expressed in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
- **22.** Find the solution of the linear equation x + 2y = 8 which represents a point on (i) *x*-axis (ii) *y*-axis

OR Find the value of a and b, if the line 6bx + ay = 24 passes through (2, 0) and (0, 2).

- **23.** The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral.
- **24.** \triangle ABC is right angled in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

25. In the below figure, if AB || CD, \angle APQ = 50° and \angle PRD = 127°, find *x* and *y*.

OR

In the below figure, AB, CD and EF are three lines concurrent at O. Find the value of y.

26. Factorise:
$$27x^3 - \frac{1}{216} - \frac{9}{2}x^2 + \frac{1}{4}x$$

<u>SECTION – C</u> Questions 27 to 34 carry 3 marks each.

27. Show that the diagonals of a square are equal and bisect each other at right angles.

OR

In the below figure, ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that (i) $\triangle APB \cong \triangle CQD$ (ii) AP = CQ

28. The Autorikshaw fare in a city is charged Rs 10 for the first kilometer and @ Rs 4 per kilometer for subsequent distance covered. Write the linear equation to express the above statement. Draw the graph of the linear equation.

29. From the figure, find the coordinates of A, B, C, D, E and F. Which of the points are mirror image in (i) x – axis (ii) y – axis

30. Line *l* is the bisector of an angle $\angle A$ and B is any point on *l*. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see the below figure). Show that: (i) $\triangle APB \cong \triangle AQB$ (ii) BP = BQ or B is equidistant from the arms of $\angle A$.

31. In the below figure, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $\frac{1}{2} \angle$ QPR.

32. If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 - 3abc = -25$.

33. If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
, find $x^2 + \frac{1}{x^2}$

If a and b are rational numbers and $\frac{7-4\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$, find the values of a and b.

34. In the above sided figure, if $QT \perp PR$, $\angle TQR = 40^{\circ}$ and $\angle SPR = 30^{\circ}$, find x and y.

OR

<u>SECTION – D</u> Questions 35 to 40 carry 4 marks each.

35. Simplify $\frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}}$ by rationalizing the denominator.

- **36.** Solve the equation 2x + 1 = x 3, and represent the solution(s) on (i) the number line, (ii) the Cartesian plane.
- **37.** The polynomial $f(x) = x^4 2x^3 + 3x^2 ax + b$ when divided by (x 1) and (x + 1) leaves the remainders 5 and 19 respectively. Find the values of a and b. Hence, find the remainder when f(x) is divided by (x 3).

OR Without actual division, prove that $2x^4 - 6x^3 + 3x^2 + 3x - 2$ is exactly divisible by $x^2 - 3x + 2$.

- **38.** ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- **39.** Plot the following points on a graph paper:

X	1	2	3	4	5
у	5	8	11	14	17
	1	0			

Join these points. What do you observe?

40. If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse and one side of other triangle, prove that the two triangles are congruent

OR

Prove that "The sum of any two sides of a triangle is always greater than the third side."

.....