# TARGET MATHEMATICS by:- AGYAT GUPTA





# CLASS XII

- Page 1 of 3 <sup>Ovality</sup> equipage **18**<sup>th<sup>6</sup></sup> TMG-D/79/89
- Please check that this question paper contains 3 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 29 questions.

### General Instructions: -

Code No. Series AG-TM-1

- **1.** All questions are compulsory.
- 2. The question paper consists of 29 questions divided into three sections A, B and C. Section A contains 10 questions of 1 marks each, Section B is of 12 questions of 4 marks each and Section C is of 7 questions of 6 marks each.
- 3. Write the serial number of the question before attempting it.
- 4. If you wish to answer any question already answered, cancel the previous answer.
- 5. In questions where internal choices is provided. You must attempt only one choice.

# **MATHEMATICS**

### Time Allowed : 3 hours

Maximum Marks: 100

# PART – A

- **1.** If  $f: R \to R$  be given by  $f(x) = (3-x^3)^{1/3}$  then find the value of fof(x).
- If A is a matrix of order 2×3 and B is a matrix of order 3×5, what is the order of matrix (AB)'.
- 3. Given an example to show that the relation R in the set of natural numbers defined by R = { (x, y): x, y  $\in$  N,  $x \le y^2$  } is not transitive.

**4.** Find the value of x for which 
$$\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$$
.

- 5. Find x, if  $\tan^{-1} 4 + \cot^{-1} x = \frac{\pi}{2}$ .
- 6. Find f(x) satisfying the following :  $\int (2x+1)\sqrt{x^2 + x + 1} dx x = f(x) + c$ .
- 7. Evaluate :  $\int_0^{2/3} \frac{dx}{4+9x^2}$ .
- 8. Write a vector normal to the plane  $\vec{r} = \mu \vec{a} + \lambda \vec{b}$ .
- 9. Write the value of k for which the line  $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{k}$  is perpendicular to the normal

to the plane  $\vec{r} \cdot (2i+3j+4k)+4=0$ .

10. Find the area of a parallelogram whose adjacent sides are given by the vectors

$$\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$$
 and  $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ .

TMC/D/79/89

P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII .© publication of any part of this paper is strictly prohibited..

Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com.

# TARGET MATHEMATICS by:- AGYAT GUPTA Page 2 of 3 PART – B

11. Let f, g : R → R be defined as f(x)=|x| and g(x)= [x] where [x] denotes the greatest integer less than or equal to x. Find fog (<sup>5</sup>/<sub>2</sub>) and gof (-√2).
12. Prove that : 2 tan<sup>-1</sup>(<sup>1</sup>/<sub>2</sub>)+tan<sup>-1</sup>(<sup>1</sup>/<sub>7</sub>) = tan<sup>-1</sup>(<sup>31</sup>/<sub>17</sub>)
13. If A = [<sup>2</sup> -3]/<sub>3 4</sub>], show that A<sup>2</sup> - 6A + 17I = 0 Hence, find A<sup>-1</sup>.
OR
If A = [<sup>3 -4</sup>/<sub>1 -1</sub>], then prove that A<sup>n</sup> = [<sup>1+2n -4n</sup>/<sub>n 1-2n</sub>], where n is any positive integer.
14. For what value of a and b, the function f defined as: f(x) = { 3ax+b, if,x<1 11, if,x=1 is 5ax-2b, if,x>1

**15.** If  $y = (\log x)^{\cos x} + \frac{x^2 + 1}{x^2 - 1}$ , find  $\frac{dy}{dx}$ 

**16.**For the curve  $y = 4x^3 - 2x^5$  find all the points at which tangent passes through the origin .

**17.**Using properties of definite integral, evaluate:  $\int_0^{\pi} \frac{x dx}{4 - \cos^2 x}$  **18.**Solve the following differential equation :  $xy \frac{dy}{dx} + \sqrt{1 + x^2 + y^2 + x^2 y^2} = 0$ .

### )R

Find the particular solution of the differential equation  $(xdy - ydx)y.\sin\left(\frac{y}{x}\right) = (ydx + xdy)x\cos\frac{y}{x}$ , given that  $y = \pi$  when x=3.

19. Form the differential equation of the family of circles having radii 3 .

**20.**Find a vector of magnitude 5 units perpendicular to each of the vectors  $(\vec{a} + \vec{b})$  and

 $(\vec{a}-\vec{b})$  where  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$  and  $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ 

### OR

OR

If the sum of the two unit vector is unit vector prove that magnitude of their difference is  $\sqrt{3}$  .

**21.**Find the distance of the point (-2,3,-4) from the line  $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$  measured

parallel to the plane 4x + 12y - 3z + 1 = 0

Find the equation of the plane passing through the point (1, 1, 1) and containing the line  $\vec{r} = -3\hat{i} + \hat{j} + 5\hat{k} + \lambda(3\hat{i} - \hat{j} - 5\hat{k})$ . Also prove that the plane contain the line  $\vec{r} = -\hat{i} + 2\hat{j} + 5\hat{k} + \mu(\hat{i} - 2\hat{j} - 5\hat{k})$ 

TMC/D/79/89

2 P.T.O. Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited..

Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com.

### **TARGET MATHEMATICS by:- AGYAT GUPTA**Page 3 of 3

**22.**In an examination, 6 questions of true- false type are asked. A student tosses a fair die to determine his answer to each question. If the die show 1 or 2, he answers true otherwise he answers false. Find the probability that he answers at most 4 questions correctly it.

## PART - C

**23.**Using properties of determinants, show that :

 $\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3.$ 

**24.**Show that the semi-vertical angle of a right circular cone of maximum volume and of given slant height is  $\tan^{-1}\sqrt{2}$ 

#### OR

Given the sum of the perimeter of a square and a circle, show that the sum of their areas is least when the side of the square is equal to diameter of the circle.

**25.**Find the area of the region :  $\{(x, y) : y^2 \ge 6x, x^2 + y^2 \le 16\}$ .

**26.**Evaluate  $\int_{1}^{3} (x^2 + 5x) dx$  as the limit of sums.

**27.**Find the coordinates of the image of the point (1,3,4) in the plane 2x - y + z + 3 = 0.

OR

Find the distance between the point P(6,5,9) and the plane determined by the points A (3,-1,2) B (5,2,4) and C (-1,-1,6).

- **28.** A man has Rs 1,500 for purchasing rice and wheat. A bag of rice and a bag of wheat cost Rs 180 and Rs 120 respectively. He has the storage capacity of at most 10 bags. He earns a profit of Rs 11 and Rs 9 per bag of rice and wheat respectively. Formulate the above problem as an LPP to maximize the profit and solve it graphically.
- **29.** A doctor is to visit a patient. From the past experience it is know that the probabilities of the doctor coming by train, bus, scooter or taxi are  $\frac{1}{10}, \frac{1}{5}, \frac{3}{10}$ , and  $\frac{2}{5}$  respectively. The

probabilities that he will be late are  $\frac{1}{4}$ ,  $\frac{1}{3}$  and  $\frac{1}{12}$  if he comes by train, bus or scooter

respectively, but by taxi he will not be late. When he arrives he is late. What is the probability that he comes by bus ?

\*\*\*\*\*\*\*\*\*\*\*

P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited.. Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.

3