RISE OF NATION ACADEMY
 "We create the impeccable creature"
 Test Paper
 Standard - Xth

Subject - Mathematics

Time - $\mathbf{3}$ hrs.
Max. Marks - 80

Min. Marks - 40

SECTION - A

Question numbers 1 to 6 carry 1 mark each.

1. Two cubes have their volumes in the ratio $1: 27$. Find the ratio of their surface areas.
2.If one root of $5 x^{2}+13 x+k=0$ is the reciprocal of the other root, then find value of k.
2. $A(5,1) ; B(1,5)$ and $C(-3,-1)$ are the vertices of $\cdot A B C$. Find the length of median $A D$.
3. If $x=a, y=b$ is the solution of the pair of equations $x-y=2$ and $x+y=4$, find the values of a and b.
4. If $\triangle A B C \sim \triangle Q R P, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle Q R P)}=\frac{9}{4}$ and $B C=15 \mathrm{~cm}$. then find $P R$.
6.Write whether $\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}$ on simplification gives an irrational or a rational number.

SECTION - B

Question numbers $\mathbf{7}$ to $\mathbf{1 2}$ carry $\mathbf{2}$ marks each.
7. A right circular cylinder and a cone have equal bases and equal heights. If their curved surface areas are in the ratio $8: 5$, show that the ratio between radius of their bases to their height is $3: 4$.
8. Find the linear relation between x and y such that $P(x, y)$ is equidistant from the points
$A(1,4)$ and
$B(-1,2)$.
9. X is a point on the side $B C$ of $\triangle A B C$. $X M$ and $X N$ are drawn parallel to $A B$ and $A C$ respectively meeting $A B$ in N and $A C$ in M. MN produced meets CB produced at T. Prove that $T X^{2}=T B \times T C$
10. Given that $\sqrt{3}$ is an irrational number, prove that $(2+\sqrt{3})$ is an irrational number.
11. $A B C$ is a triangle in which $\angle B=90 \circ, B C=48 \mathrm{~cm}$ and $A B=14 \mathrm{~cm}$. A circle is inscribed in the triangle, whose centre is 0 . Find radius r of in-circle.
12. A, B, C are interior angle of $\triangle A B C$. Prove that $\operatorname{cosec} \frac{A+B}{2}=\sec \frac{c}{2}$.

SECTION - C

Question numbers 13 to 22 carry 3 marks each.
13. Construct a triangle with sides $\mathbf{6 c m}, 8 \mathrm{~cm}$ and 10 cm . Construct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of original triangle.
14. If
$\sin (A+2 B)=\frac{\sqrt{3}}{2}$ and $\cos (A+4 B)=0, A>B$ and $A+4 B \leq$ 90°, then find A and B.
15. By changing the following frequency distribution 'to less than type' distribution, draw its ogive.

Classes	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$
Frequency	6	8	10	6	4

16. In fig. (2) $A B$ is a chord of length 8 cm of a circle of radius 5 cm . The tangents to the circle at A and B intersect at P. Find the length of $A P$.
\square

Show in figure $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. prove that $\angle A O B=90^{\circ}$.

17. Show that any positive odd integer is of the form $4 q+1$ or $4 q+3$, where q is some integer.
18. The short and long hands of a clock are 4 cm and 6 cm long respectively. Find the sum of distances travelled by their tips in 48 hours.

OR

The side of a square is 10 cm . Find the area between inscribed and circumscribed circles of the square.
19. In an A.P if sum of its first n terms is $3 n^{2}+5 n$ and its $k^{\text {th }}$ term is 164 , find the value of k.
20. Divide 27 into two parts such that the sum of their reciprocals is $\frac{3}{20}$
21. Prove that,
$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$
\square

OR

Evaluate
$\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\sqrt{3}\left(\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}\right)}$
22. If coordinates of two adjacent vertices of a parallelogram are $(3,2),(1,0)$ and diagonals bisect each other at $(2,-5)$, find coordinates of the other two vertices.

OR
If the area of triangle with vertices $(x, 3),(4,4)$ and $(3,5)$ is 4 square units, find x.

SECTION - D

Question numbers 23 to 30 carry 4 marks each.
23. A faster train takes one hour less than a slower train for a journey of $\mathbf{2 0 0} \mathbf{~ k m}$. If the speed of slower train is $10 \mathrm{~km} / \mathrm{hr}$ less than that of faster train, find the speeds of two trains.

OR

Solve for $\mathrm{x}, \frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}, a \neq 0, b \neq 0, x \neq 0$
24. The angle of elevation of the top of a hill at the foot of a tower is $\mathbf{6 0 0}$ and the angle of depression from the top of tower to the foot of hill is $\mathbf{3 0 \%}$. If tower is $50-\mathrm{metre-high}$, find the height of the hill.

OR

Two poles of equal heights are standing opposite to each other on either side of the road which is 80 m wide. From a point in between them on the road, the angles of elevation of the top of poles are $\mathbf{6 0}$ and $\mathbf{3 0}$ respectively. Find the height of the poles and the distances of the point from the poles.
25. Obtain all zeroes of $3 \times 4-15 \times 3+13 \times 2+25 x-30$, if two of its zeroes are $\sqrt{ } \frac{5}{3}$ and $-\sqrt{ } \frac{5}{3}$
26. A man donates 10 aluminium buckets to an orphanage. A bucket made of aluminium is of height $\mathbf{2 0} \mathbf{~ c m}$ and has its upper and lowest ends of radius $\mathbf{3 6} \mathbf{~ c m}$ and $\mathbf{2 1} \mathbf{~ c m}$ respectively. Find the cost of preparing 10 buckets if the cost of aluminium sheet is $\mathbf{4 2}$ per 100 cm 2 . Write your comments on the act of the man.
27. Find the mean and mode for the following data:

Class	$10-$	$20-$	$30-$	$40-$	$50-$	$60-$	$70-$
20	30	40	50	60	70	80	
Frequency	4	8	10	12	10	4	2

28. For what values of m and n the following system of linear equations has infinitely many solutions.
$3 x+4 y=12$
$(m+n) x+2(m-n) y=5 m-1$.
29. A box contains cards numbered from 1 to 20. A card is drawn at random from the box. Find the probability that number on the drawn card is
(i) a prime number
(ii) a composite number
(iii) a number divisible by 3

OR
The King, Queen and Jack of clubs are removed from a pack of 52 cards and then the remaining cards are well shuffled. A card is selected from the remaining cards. Find the probability of getting a card

close Sguess	CBSEGuess.com

$\begin{array}{llll}\text { (i) of spade } & \text { (ii) of black king } & \text { (iii) of club } & \text { (iv) of jacks }\end{array}$
30. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

