CBSE Sample Papers For Class 9 SA2 Maths-Solved 2016 (Set 1)

Answers

SECTION-A

1. Find the total surface area of cone whose radius is $2 r$ and slant height is $\frac{1}{2}$.

Sol. Total surface area of cone $=\pi \times 2 r\left(\frac{1}{2}+2 r\right)=\pi r(1+4 r)$ sq. units.
2. If $\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \ldots, \bar{x}_{n}$ are the means of n groups with $n_{1}, n_{2}, n_{3}, \ldots, n_{n}$ number of observations respectively, then find the mean x of all the groups taken together.

Sol. Combined mean $(\bar{x})=\frac{\bar{x}_{1} n_{1}+\bar{x}_{2} n_{2}+\bar{x}_{3} n_{b}+\ldots+\bar{x}_{n} n_{n}}{n_{1}+n_{2}+n_{3}+\ldots+n_{n}}$
3. Find the radius of largest sphere that is carved out of the cube of side $7 \mathbf{c m}$.

Sol. The largest sphere can be carved out from a cube, if we take diameter of the sphere equal to edge of the cube.
$\therefore \quad$ Diameter of the sphere $=7 \mathrm{~cm}$
Thus, radius of the sphere $=\frac{7}{2}=3.5 \mathrm{~cm}$
4. A dice is thrown once, what is the probability of getting odd primes?

Sol. Number of possible outcomes, when a dice is thrown is $6,\{1.2,3,4,5,6\}$
Number of odd primes $=2$ i.e., 3,5
$\therefore \mathrm{P}($ getting odd primes $)=\frac{2}{6}=\frac{1}{3}$

SECTION-B

5. A, B and C are three points on a circle with centre O such that $\angle B O C=30^{\circ}$ and $\angle A O B=60^{\circ}$. If D is another point on the circle other than the arc $A B C$, find $\angle A D C$.

Sol.

$$
\begin{aligned}
\angle \mathrm{AOC} & =\angle \mathrm{AOB}+\angle \mathrm{BOC} \\
& =60^{\circ}+30^{\circ}=90^{\circ}
\end{aligned}
$$

Now, $\angle A O C$ and $\angle A D C$ are angles subtended by an $\operatorname{arc} A B C$ at the centre and at the remaining part of the circle.

$$
\angle \mathrm{ADC}=\frac{1}{2} \angle \mathrm{AOC}=\frac{1}{2} \times 90^{\circ}=45^{\circ}
$$

Hence, degree measures of angle $A D C$ is 45°.
6. A capsule of medicine is in the shape of a sphere of diameter 3.5 mm . How much medicine (in mm^{3}) is needed to fill this capsule?

Sol. Radius of the sphere $=\frac{3.5}{2} \mathrm{~mm}$

$$
\text { Volume of sphere }=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} \times \frac{3.5}{2}=22.46 \mathrm{~mm}^{3}
$$

Hence, the volume of the medicine required to fill one capsule is $22.46 \mathrm{~mm}^{3}$.
7. The mean of the following distribution is $\mathbf{5 0}$.

x	f
10	17
30	$5 a+3$
50	32
70	$7 a-11$
90	19

Find the value of a and hence the frequencies of 30 and 70.

Sol.

$$
\begin{array}{rlrl}
& & \text { Mean } & =10 \times 17+30(5 a+3)+50(32)+70(7 a-11)+90 \times 19 \\
& & 17+5 a+3+32+7 a-11+19 \\
& & & \\
\Rightarrow & & 50 & =170+150 a+90+1600+490 a-770+1710 \\
\Rightarrow & & 50(12 a+60) & =2800+640 a \\
\Rightarrow & & 600 a+3000 & =2800+640 a \\
\Rightarrow & & 40 a & =200
\end{array}
$$

Hence, value of a is 5 , frequencies of 30 and 70 are 28 and 24 respectively.

8. Find the surface area of a sphere of radius $10.5 \mathbf{~ c m}$.

Sol. Here
radius of the sphere $(r)=10.5 \mathrm{~cm}$
Surface area of the sphere $=4 \pi r^{2}=4 \times \frac{22}{7} \times 10.5 \times 10.5=1386 \mathrm{~cm}^{2}$
9. The following table gives the frequencies of most commonly used letters a, e, i, o, r, t, u from a page of a book :

Letters	Frequency
a	75
e	125
i	80
o	70
r	80
t	95
u	75

Represent the information above by a bar graph.

Sol. The required bar graph is as given below :

10. A godown measures $40 \mathrm{~m} \times 25 \mathrm{~m} \times 10 \mathrm{~m}$. Find the maximum number of wooden crates each measuring $1.5 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5 \mathrm{~m}$ that can be stored in the godown.

Sol

$$
\begin{aligned}
\text { Volume of the godown } & =40 \times 25 \times 10 \mathrm{~m}^{3} \\
\text { Volume of each wooden crate } & =1.5 \times 1.25 \times 0.5 \mathrm{~m}^{3} \\
\text { Maximum number of wooden crates } & =\begin{array}{c}
40 \times 25 \times 10 \\
1.5 \times 1.25 \times 0.5
\end{array}=\frac{400}{15} \times \frac{2500}{125} \times \frac{100}{5} \\
& =10666.67
\end{aligned}
$$

Hence. the maximum number of wooden crates to be occupied are 10666.

SECTION-C

11. Construct a $\triangle A B C$ in which $B C=7 \mathrm{~cm}, \angle B=75^{\circ}$ and $A B+A C=13 \mathbf{c m}$.

Sol. Steps of Construction :

1. Draw a line segment $\mathrm{BC}=7 \mathrm{~cm}$.
2. At B, construct an $\angle C B X=75^{\circ}$.
3. From ray $B X$, cut off $B D=13 \mathrm{~cm}$.
4. Join DC.
5. Draw the perpendicular bisector of DC meeting $B D$ in A.
6. Join $A C$.

Thus, $\triangle A B C$ is the required triangle.

12. Prove that equal chords of a circle subtends equal angles at the centre.

Sol. Given : A circle $C(O, r)$ and its two chords $A B$ and $C D$. such that $A B=C D$
To Prove : $\angle A O B=\angle C O D$
Proof: $\ln \triangle A O B$ and $\triangle C O D$

$$
\begin{array}{ll}
\mathrm{AB}=\mathrm{CD} & \text { [given] } \\
\mathrm{OA}=\mathrm{OC}=r \\
\mathrm{OB}=\mathrm{OD}=r
\end{array}
$$

So by using SSS congruence axiom, we have

$$
\Delta \mathrm{AOB} \cong \triangle \mathrm{COD}
$$

Thus $\quad \angle A O B=\angle C O D \quad$ [c.p.c.t.]
13. D, E and F are the mid-points of the sides $B C, C A$ and $A B$, respectively of an equilateral triangle $A B C$. Show that $\triangle D E F$ is also an equilateral triangle.

Sol. Here, D, E and F are the mid-points of $B C, C A$ and $A B$ respectively.

Since the line segment joining the mid-points of any two sides of a triangle is half of the third side.

Similarly,

$$
\begin{align*}
\mathrm{DE} & =\frac{1}{2} \mathrm{AB} \tag{i}\\
\mathrm{EF} & =\frac{1}{2} \mathrm{BC} \tag{ii}
\end{align*}
$$

$$
\begin{array}{rlr}
\mathrm{FD} & =\frac{1}{2} \mathrm{CA} \\
\text { But } & \mathrm{AB} & =\mathrm{BC}=\mathrm{CA} \\
\frac{1}{2} \mathrm{AB} & =\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{CA} & {[\because \triangle \mathrm{ABC} \text { is an equilateral] }} \\
\Rightarrow \quad \mathrm{DE} & =\mathrm{EF}=\mathrm{FD} &
\end{array}
$$

Hence, $\triangle \mathrm{DEF}$ is an equilateral triangle.
14. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from A and C to the diagonal $B D$. Show that $A P=C Q$.

Sol. Since $A B C D$ is a parallelogram.
$A B \| D C$.
Now, $A B|\mid D C$ and $B D$ is a transversal

$$
\angle \mathrm{ABD}=\angle \mathrm{CDB}
$$

[alt. int. $\angle \mathrm{s}$]
Now, in $\triangle A P B$ and $\triangle C Q D$

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{CD} & & {\left[\text { opp. sides of a } \|^{\mathrm{gm}]}\right.} \\
\angle \mathrm{APB} & =\angle \mathrm{CQD}=90^{\circ} & & \\
\angle \mathrm{ABP} & =\angle \mathrm{CDQ} & & \text { [proved above] }
\end{aligned}
$$

So, by using AAS congruence axiom, we have

$$
\triangle \mathrm{APB} \cong C Q D
$$

Thus,

$$
A P=C Q
$$

[c.p.c.t.]
15. 1500 families with 2 children were selected randomly and the following data were recorded

Number of Girls in a family	2	1	0
Number of Families	475	814	211

Compute the probability of a family, chosen at random, having :
(i) 2 girls
(ii) 1 girl
(iii) no girl

Sol. (i) P (having 2 girls)
$475 \quad 19$
$1500 \quad 60$
(ii) P (having 1 girl) $=\frac{814}{1500} \quad 407$
(iii) P (having no girl) $\begin{gathered}211 \\ 1500\end{gathered}$
16. Convert the given frequency distribution into a continuous grouped frequency distribution

Class-Intervals	Frequency
$150-153$	7
$154-157$	7
$158-161$	15
$162-165$	10
$166-169$	5
$170-173$	6

In which intervals would 153.5 and 157.5 be included?

Sol. Here, the frequency distribution is not continuous. So, convert it into continuous frequency distribution. The difference between the lower limit of a class and the upper limit of the preceding class is 1 i.e., $d=154-153=1$
\therefore Adjustment factor $=\frac{1}{2}=0.5$
Subtract 0.5 from each lower limit and add 0.5 to each upper limit to convert it into continuous distribution.

Class-Intervals	Frequency
$149.5-153.5$	7
$153.5-157.5$	7
$157.5-161.5$	15
$161.5-165.5$	10
$165.5-169.5$	5
$169.5-173.5$	6

153.5 is included in the class-interval 153.5-157.5 and 157.5 is included in the classinterval 157.5-161.5.
17. A hollow cylindrical pipe is 56 cm long. Its outer and inner radii are 20 cm and 16 cm respectively. Find the volume of the iron used in making the pipe.
Sol. Length of cylindrical pipe $(h)=56 \mathrm{~cm}$
Outer radius $(\mathrm{R})=20 \mathrm{~cm}$
Inner radius $(r)=16 \mathrm{~cm}$
Volume of the iron used in making the pipe $=\pi R^{2} h-\pi r^{2} h$

$$
\begin{aligned}
& =\pi h\left(R^{2}-r^{2}\right) \\
& =\frac{22}{7} \times 56\left(20^{2}-16^{2}\right) \\
& =22 \times 8 \times 144 \\
& =25344 \mathrm{~cm}^{3}
\end{aligned}
$$

18. Rinku has built a cuboidal water tank in his house. The top of the water tank is covered with an iron lid. He wants to cover the inner surface of the tank including the base with tiles of size 10 cm by 8 cm . If the dimensions of the water tank are $180 \mathrm{~cm} \times 120 \mathrm{~cm} \times 60 \mathrm{~cm}$ and cost of tiles is $₹ 480$ per dozen, then find the total amount required for tiles.
(CBSE March 2012)

Sol. Total inner surface area of the water tank including the base without top

$$
\begin{aligned}
& =2(t+b) \times h+l \times b \\
& =2(180+120) \times 60+180 \times 120 \\
& =3600+2160=57600 \mathrm{~cm}^{2} \\
\text { Area of each tile } & =10 \times 8=80 \mathrm{~cm}^{2} \\
\text { Number of tiles required } & =5760=720 \\
& 80
\end{aligned}
$$

Total amount required for 720 tiles at the rate of $₹ 480$ per dozen $=₹--100 \times 720=₹ 28800$

SECTION-D

19. $A B C D$ is a parallelogram in which $B C$ is produced to E such that $C E=B C$ (figure). $A E$ intersects $C D$ at F.
If $\operatorname{ar}(\triangle D F B)=3 \mathrm{~cm}^{2}$, find the area of the parallelogram $A B C D$.

Sol. In $\triangle A D F$ and $\triangle E C F$, we have

$$
\begin{array}{rlrl}
\angle \mathrm{ADF} & =\angle \mathrm{ECF} & {[\text { alt. int. } \angle \mathrm{s}]} \\
\mathrm{AD} & =\mathrm{EC} & {[\because \mathrm{AD}=\mathrm{BC} \text { and } \mathrm{BC}=\mathrm{EC}]} \\
\angle \mathrm{DFA} & =\angle \mathrm{CFE} & & {[\text { vert. opp. } \angle \mathrm{s}]}
\end{array}
$$

\therefore By AAS congruence rule.

$$
\begin{aligned}
& & \Delta A D F & \equiv \triangle E C F \\
\Rightarrow & & D F & =C F \\
\Rightarrow & & \operatorname{ar}(\triangle A D F) & =\operatorname{ar}(\triangle E C F)
\end{aligned}
$$

Now,

$$
\mathrm{DF}=\mathrm{CF}
$$

$\Rightarrow \mathrm{BF}$ is a median in $\triangle \mathrm{BDC}$
$\Rightarrow \quad \operatorname{ar}(\triangle B D C)=2 \operatorname{ar}(\triangle \mathrm{DFB})=2 \times 3=6 \mathrm{~cm}^{2}$
Thus ar($\left(\mu^{\mathrm{mm}} \mathrm{ABCD}\right)=2 \operatorname{ar}(\triangle \mathrm{BDC})=2 \times 6=12 \mathrm{~cm}^{2}$
20. In the figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line segment $C D$ is bisected by $A B$ at O, show that ar $(\triangle A B C)=\operatorname{ar}(\triangle A B D)$.

Sol. Since line segment $C D$ is bisected by $A B$ at O.
$\therefore O$ is the mid-point of $C D$.
Now, in $\triangle A C D, A O$ is the median

$$
\begin{equation*}
\operatorname{ar}(\triangle A C O)=\operatorname{ar}(\triangle A D O) \tag{i}
\end{equation*}
$$

Again, in $\mathrm{CBD}, \mathrm{BO}$ is the median

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{COB})=\operatorname{ar}(\triangle \mathrm{DOB}) \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we have

$$
\begin{aligned}
\operatorname{ar}(\triangle \mathrm{ACO})+\operatorname{ar}(\triangle \mathrm{COB}) & =\operatorname{ar}(\triangle \mathrm{ADO})+\operatorname{ar}(\mathrm{DOB}) \\
\operatorname{ar}(\triangle \mathrm{ABC}) & =\operatorname{ar}(\mathrm{ABD})
\end{aligned}
$$

21. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Sol. Let $A B$ be a chord of the circle with centre O, such that $O A=O B=A B$
Clearly, in $\triangle A O B$

$$
O A=O B=A B
$$

$\Rightarrow \quad \triangle A O B$ is an equilateral or equiangular.
$\therefore \quad \angle A O B=60^{\circ}$
Now. $\angle A O B$ and $\angle A C B$ are angles subtended by an arc $A B$ at the centre and at the remaining part of the circle.
$\therefore \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$

Consider arc ACB.
Clearly, arc ACB subtends angle of measure $360^{\circ}-60^{\circ}$ i.e., 300° at the centre O .

$$
\angle \mathrm{ADB}=\frac{1}{2} \times \text { reflex } \angle \mathrm{AOB}=\frac{1}{2} \times 300^{\circ}=150^{\circ}
$$

Hence, angle subtended by the chord $A B$ at a point D on the minor arc is 150° and at a point C on the major arc is 30°.
22. Construct a $\triangle P Q R$, in which $Q R=6 \mathrm{~cm}, \angle Q=60^{\circ}$ and $P R-P Q=2 \mathrm{~cm}$.

Sol. Steps of Construction :

1. Draw any line segment $\mathrm{QR}=6 \mathrm{~cm}$.
2. At Q , construct $\angle \mathrm{RQX}=60^{\circ}$ and produce

XQ to form the line $\mathrm{XQX}{ }^{\prime}$.
3. From QX^{\prime}, cut off $\mathrm{QS}=2 \mathrm{~cm}$.
4. Join SR.
5. Draw perpendicular bisector of line segment SR and let it intersect XQX ' in P .
6. Join PR.

Thus, $\triangle \mathrm{PQR}$ is the required triangle.

23. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Sol. Let ABCD is a cyclic quadrilateral such that its diagonals AC and BD are the diameters of the circle through the vertices A, B, C and D.

Since AC is a diameter and angle in a semicircle is a right angle.
$\therefore \angle \mathrm{ABC}=90^{\circ}$ and $\angle \mathrm{ADC}=90^{\circ}$

Similarly, BD is a diameter.
$\therefore \angle \mathrm{DAB}=90^{\circ}$ and $\angle \mathrm{BCD}=90^{\circ}$
Thus, $\angle \mathrm{ABC}=\angle \mathrm{BCD}=\angle \mathrm{CDA}=\angle \mathrm{DAB}=90^{\circ}$
Now, in cyclic quadrilateral $A B C D$, each angle is a right angle.
Hence, ABCD is a rectangle.
24. If two equal chords of a circle intersect within the circle, then prove that the line joining the point of intersection to the centre makes equal angles with the chords.

Sol. Join OP , draw $\mathrm{OL} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{CD}$, thus L and M are the mid-points of $A B$ and $C D$ respectively.
Also, equal chords are equidistant from the centre

$$
\mathrm{OL}=\mathrm{OM}
$$

Now, in right-angled Δs OLP and OMP

$$
\begin{aligned}
\mathrm{OL} & =\mathrm{OM} & & \text { [given] } \\
\mathrm{OP} & =\mathrm{OP} & & {[\text { common }] } \\
\angle \mathrm{OLP} & =\angle \mathrm{OMP} & & {\left[\text { each }=90^{\circ}\right] }
\end{aligned}
$$

So, by RHS congruence axiom, we have

$$
\Delta \mathrm{OLP} \cong \triangle \mathrm{OMP}
$$

Hence, $\quad \angle \mathrm{OPL}=\angle \mathrm{OPM} \quad$ [c.p.c.t.]
25. A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is $\mathbf{3} \mathbf{~ m}$. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.

Sol.

$$
\begin{aligned}
\text { Diameter of cone } & =10.5 \mathrm{~m} \\
\text { Radius of cone }(r) & =5.25 \mathrm{~m} \\
\text { Height of cone }(h) & =3 \mathrm{~m} \\
\text { Volume of cone } & =\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 5.25 \times 5.25 \times 3=86.625 \mathrm{~m}^{3} \\
\text { Slant height of cone }(l) & =\sqrt{r^{2}+h^{2}} \\
& =\sqrt{(5.25)^{2}+3^{2}} \\
& =\sqrt{27.5625+9} \\
& =\sqrt{36.5625} \\
& =6.047=6.05 \mathrm{~m} \\
\text { Area of the canvas required } & =\text { C.S.A. of cone } \\
& =\pi r l=\frac{22}{7} \times 5.25 \times 6.05=99.825 \mathrm{~m}^{2}
\end{aligned}
$$

Hence. the volume of the heap of wheat is $86.625 \mathrm{~m}^{3}$ and area of the canvas required is $99.82 .5 \mathrm{~m}^{2}$.
26. An insurance company selected 1800 drivers at random in a particular city to find a relationship between age and accidents. The data obtained are given in the following table

Age of Drivers (in years)	Accidents in one year				
	0	1	2	3	over 3
$18-29$	390	155	100	40	28
$30-50$	486	120	68	14	8
Above 50	308	40	30	8	5

Find the probability of the following events for a driver chosen at random from the city
(a) Having exactly 2 accidents in one year.
(b) Being 30-50 years of age group and having no accident in a year.
(c) To avoid accidents on roads. What should one do?

Sol. (a) Total number of drivers having exactly 2 accidents in one year $=100+68+30=198$
Required probability $=\frac{198}{1800}=\frac{11}{100}$
(b) Total number of drivers in the age group (30-50) years having no accident in one year $=486$

Required probability $=\begin{gathered}486 \\ 1800\end{gathered}=\frac{27}{100}$
(c) To avoid accidents one should obey the traffic rules as life is very precious.
27. A cubical box has each edge 10 cm and another cuboidal box is $12.5 \mathrm{~cm}, 10 \mathrm{~cm}$ wide and 8 cm high.
(i) Which box has the greater lateral surface area and by how much ?
(ii) Which box has the smaller total surface area and by how much?

Sol. . tere. side of cubical box $=10 \mathrm{~cm}$
Its lateral surface area $=4(\text { side })^{2}$

$$
=4(10)^{2}
$$

$$
=400 \mathrm{~cm}^{2}
$$

Total surface area $=6(\text { side })^{2}$

$$
\begin{aligned}
& =6(10)^{2} \\
& =600 \mathrm{~cm}^{2}
\end{aligned}
$$

Also, dimensions of the cuboidal box are 12.5 cm by 10 cm by 8 cm .

$$
\begin{aligned}
\text { Lateral surface area } & =2(l+b) h \\
& =2(12.5+10) 8 \\
& =2 \times 22.5 \times 8 \\
& =360 \mathrm{~cm}^{2} \\
\text { Total surface area } & =2(1 b+b h+h l) \\
& =2(12.5 \times 10+10 \times 8+8 \times 12.5) \\
& =2(125+80+100) \\
& =610 \mathrm{~cm}^{2}
\end{aligned}
$$

(i) Cubical box has greater lateral surface area and by $400-360$ i.e., $40 \mathrm{~cm}^{2}$.
(ii) Cubical box has smaller total surface area and by $610-600$ i.e.. $10 \mathrm{~cm}^{2}$.

28. Find mean, mode and median for the following data :

 $10,15,18,10,10,20,10,20,15,21,15$ and 25Sol.

$$
\text { Mean, } \begin{aligned}
\bar{x} & =\frac{10+15+18+10+10+20+10+20+15+21+15+25}{12}-189 \\
x & =15.75
\end{aligned}
$$

Frequency of 10 is 4 which is maximum
Mode $=10$
Arrange the data in ascending order : $10,10,10,10,15,15,15,18,2020,21,25$ Here, $n=12$ (an even number)

$$
\begin{aligned}
\text { Median }= & \left(\frac{\left(\frac{n}{2}\right.}{)^{\text {th }} \text { value }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { value }} \begin{array}{rl}
2 & \binom{12}{2}^{\text {th }} \text { value }+\left(\frac{12}{2}+1\right)^{\text {th }} \text { value } \\
2
\end{array}\right. \\
= & \frac{6^{\text {th }} \text { value }+7^{\text {th }} \text { value }}{2} \\
= & \frac{15+15}{2}=15
\end{aligned}
$$

