Roll No. \square

MATHEMATI CS

SET - B
Time allowed: $\mathbf{3} \mathbf{h r}$
Maximum Marks : 100

General Instructions:

(i) All Question are compulsory.
(ii) The question paper consists of 29 questions divided into three sections A, B, and C. Section A comprises of 10 questions of one mark each. Section B comprises of 12 questions of four marks each and Section C comprises of $\mathbf{7}$ questions of six marks each.
(iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question..
(iv) There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.

SECTION A

1 Find the value of k for which $\frac{-2}{7}, k, \frac{-7}{2}$ are in G.P.
2 Write the value of cot 15°
3 Express ($-5 \mathrm{i})\left(\frac{1}{8} \mathrm{i}\right)$ in the standard form.
4 If $2 \cos \theta=a+\frac{1}{a}$ find the value of $2 \cos 2 \theta$

5 A box contains 6 red marbles numbered from 1 to 6 and 4 white numbered from 12 to 15 . Find the probability that a marble drawn at random is white
6 Solve: $\frac{5-2 x}{3} \leq \frac{x}{6}-5$
7 Write the equation of the hine for which $\tan \theta=\frac{1}{2}$, where θ is the inclination of the line with the x-axis and y-intercept is $-\frac{3}{2}$
$\mathrm{If}^{\mathrm{n}+1} \mathrm{C}=45$, find n
9 Find the equation of the straight line joining the point (a, b) and ($(a+b),(a-b))$
10 Find the real numbers x and y if $(x-i y)(1+i)$ is the conjugates of $-3-2 i$.

SECTION B

11 If $z_{1}=2-i, z_{2}=1+i$, find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right| \quad$ OR
If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$
12 Prove that using the principle of mathematical induction for all $n \in N$:

$$
\frac{1}{1.2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots . \cdot+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}
$$

13 (i) How many 6 -digit numbers can be formed from the digits $0,1,3,5,7$ and 9 which are divisible by 10 and no digit is repeated?
(ii) In how many ways can 5 girls and 3 boys be seated in a row so that no two boys are together?

14 A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl.
15 Solve: $2 \cos ^{2} x+3 \sin x=0$
16 Prove that : $\cos 2 \theta \cos \frac{\theta}{2}-\cos 3 \theta \cos \frac{9 \theta}{2}=\sin 5 \theta \sin \frac{5 \theta}{2}$

17 Find the equation of the lines through the point $(3,2)$ which make an angle of 45° with the line $x-2 y=3$

OR

Find the equation of the circle passing through the points $(-3,4),(-2,0)$ and $(1,5)$. Find the coordinates of the centre and radius of this circle.
$18 P(a, b)$ is a mid-point of a line segment between axes. Show that equation of the line is $\frac{x}{a}+\frac{y}{b}=2$.
19 Find the equation for the ellipse that satisfies the given conditions:
vertices $(0, \pm 13)$, foci $(0, \pm 5) \quad$ OR
Find the lengths of the axes, the eccentricity, coordinates of foci and the equation of directrices of the ellipse $25 x^{2}+16 y^{2}=400$
20 Find domain and range of the real function $f(x)$ defined by $f(x)=\left\{\begin{array}{cc}2-x & x<0 \\ 1, & x=0 \\ x-2 & x>0\end{array}\right\}$ and draw its graph
21 If the origin is the centroid of the triangle $P Q R$ with vertices $P(2 a, 2,6), Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the value of a, b and c.
22 Two student A and B appeared in IIT examination. The probability that A will qualify the examination of 0.05 and that B will qualify the examination is 0.10 . The probability that both will qualify the examination is 0.02 . Find the probability that
(i) both A and B will not qualify the IIT examination
(ii) at least one of them will not qualify the IIT examination
(iii) only one of them will qualify the IIT examination

OR

A box contains 10 red marbles 20 blues marbles and 30 green marbles, 5 marbles are drawn from the box, what is the probability that (i) all will be blue (ii) at least one will be green

SECTION - C

23 In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked C. If 14 people liked product A and $B, 12$ people liked product C and $A, 14$ people liked products B and C and 8 liked all the three products. Find how many liked (i) product C only (ii) products A and C but not product B (iii) at least oneof three products.

24 Solve the following system/graphically and name the vertices of the feasible region along with their coordinates: $3 y-2 x \leq 4, x+3 y>3, x+y \geq 5, y<4$.
25 Find the sum of n terms of the series $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+$ \qquad
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of $7^{\text {th }}$ and ($m-1$)th is 5:9 Find the value of m.

26 Find the coefficient of x^{5} in the expansion of the product $(1+2 x)^{6}(1-x)^{7}$

OR

(i) Show that the middle term in the expansion of $(1+x)^{2 n}$ is equal to sum of the coefficients of two middle terms in the expansion of $(1+x)^{2 n-1}$
(ii) Find rth term from the end in the expansion of $(x+a)^{n}$

27 (i) Find the Derivative of $\sin (x+1)$ from first principles
(ii) Evaluate $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin a x+b x}{a x+\operatorname{Sin} b x} a, b, a+b \neq 0$

28 Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age	$16-20$	$21-25$	$26-30$	$31-35$	$36-40$	$41-45$	$46-50$	$51-55$
Number	5	6	12	14	26	12	16	9

29 Prove that $\frac{\sin A-\sin 5 A+\sin 9 A-\sin 13 A}{\cos A-\cos 5 A-\cos 9 A+\cos 13 A}=\cot 4 A$

