MATHEMATI CS
 SET－B

Maximum Marks： 100
Time allowed： $\mathbf{3} \mathbf{h r}$

General I nstructions：

（i）All Questions are compulsory．
（ii）The question paper consists of 29 questions divided into three sections A, B ，and C ． Section A comprises of 10 questions of one mark each．Section B comprises of 12 questions of four marks each and Section C comprises of $\mathbf{7}$ questions of six marks each．
（iii）All questions in Section A are to be answered in one word，one sentence or as per the exact requirement of the question．．
（iv）There is no overall choice．However，internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each．You have to attempt only one of the alternatives in all such questions．

Section A

1 If $f(x)$ is an invertible function，find the inverse of $f(x)=\frac{3 x-2}{5}$ ．
2 Find the principal value of $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)+\cot ^{-1}\left(\cot \frac{7 \pi}{6}\right)$ ．
3 If A is non－singular square matrix such that $|A|=10$ ，find $\left|A^{-1}\right|$ ．
4 If adj $A=\left[\begin{array}{cc}3 & 5 \\ 7 & -2\end{array}\right]$ adj $B=\left[\begin{array}{cc}2 & -3 \\ -5 & 2\end{array}\right]$ ，find adj $A B$ ．
5 Find the values of x and y if：$\quad 2\left[\begin{array}{ll}3 & 4 \\ 5 & x\end{array}\right]+\left[\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}7 & 0 \\ 10 & 5\end{array}\right]$
6 Find the value of $\int_{0}^{1} x(1-x)^{2} d x$
7 Write the value of $\int_{0}^{2} x[x] d x$
8 Find a vector in the direction of $a, 4 \hat{i}+3 \hat{j}+3 \hat{k}$ ，whose magnitude is 3 ．
9 If $|\vec{a}|=1,|\vec{b}|=1, \vec{a}, \vec{b}=\cos \theta$ ，find $|\vec{a}-\vec{b}|$
10．Find k for which the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{6-z}{5}$ are \perp to each other

Section B

11 Let $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{W}$ be defined as $\mathrm{f}(\mathrm{n})=\mathrm{n}-1$ ，if n is odd and $\mathrm{f}(\mathrm{a})=\mathrm{n}+1$ ，if n is even．Show that f is invertible．Find the inverse of f ．Here，W is the set of all whose numbers．OR Let $A=R-\{3\}$ and $B=R-\{1\}$ ．Consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$ ．Is f is one－one and onto？Justify your answer．
12 Show that $\sin ^{-1} \frac{12}{13}+\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{63}{16}=\pi$
13 If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$ ，show that $A^{2}-5 A-14 \mid=0$ ．Hence，find A^{-1}
14 Show that $f(x)=|x-2|, x \in R$ is continuous but not differentiable at $x=2$ ．
OR
If $x^{m} y^{n}=(x+y)^{m+n}$ ，prove that $\frac{d y}{d x}=\frac{y}{x}$
15 Find the interval in which the function $f(x)=x^{3}+\frac{1}{x^{3}}, x \neq 0$ is（i）increasing（ii）decreasing

16 The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base?

Or
Using differential, find the approximate value of $(0.009)^{1 / 3}$.
17 By using the properties of definite integrals, evaluate: $\int_{0}^{\pi / 4} \log (1+\tan x) d x$
18 Solve: $\left(x \cos \frac{y}{x}+y \sin \frac{y}{x}\right) y d x=\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right) x d y$
19 Solve the following differential equation: $\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0$, where $y=0$ when $x=1$
20 If $\vec{a}, \vec{b}, \vec{c}$ are respectively the position vectors of the vertices A, B, C of $\triangle A B C$, prove that area of the triangle $A B C$ is given by $\Delta=\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$
21 Find the equation of the plane which contains of the line of intersection of the plane $\vec{r} .(\hat{i}+2 \hat{j}+3 \hat{k})-4=\vec{r} .(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is \perp to the plane $\vec{r} .(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$
22 A can hit a target 3 times in 6 shots, B:2 times in 6 shots and C: 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit ?

OR

How many times must a man toss a fair coin, so that the probability of having at least one head is more than 80% ?

SECTION C
23 Show that: $\Delta=\left|\begin{array}{ccc}(y+z)^{2} & x y & z x \\ x y & (x+z)^{2} & y z \\ x z & y z & (x+y)^{2}\end{array}\right|=2 x y z(x+y+z)^{3}$
24 Show that the right circular cone of least curved surface and/given colume has an altitude equal to $\sqrt{2}$ times the radius of the base.

OR
Find the point on the curve $y^{2}=2 x$-which is at a minimum distance from the point $(1,4)$,
25 Evaluate: $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} \mathrm{~d} x$ / $\mathbf{O R}$ Show that: $\int_{0}^{\pi / 2}(\sqrt{\tan x}+\sqrt{\cot x}) \mathrm{dx}=\sqrt{2} \pi$
26 Using integration, find the area of the region $\left\{(x, y) ;|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}$
27 Find the equation of the plane which contains the two parallel line $\frac{x-3}{3}=\frac{y+4}{2}=\frac{z-1}{1}$ and $\frac{x+1}{3}=\frac{y-2}{2}=\frac{z}{1}$
28 An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that
(i) all will bear ' X ' mark.
(ii) not more than 2 will bear ' Y ' mark
(iii) at least one ball will bear ' γ ' mark
(iv) the number of balls with ' X ' mark and ' Y ' mark will be equal

29 A dietician wishes to mix together two kind of food X and Y in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C . The vitamin contents of 1 kg food is given below

Food	Vitamin A	Vitamin B	Vitamin C
X	1	2	3
Y	2	2	1

One kg of food X costs Rs. 16 and one kg of food Y costs Rs. 20. Find the least cost of the mixture which will produce the required diet?

Best of Luck

Answers (MOCK TEST -2)
 Section A

$1 \quad f^{-1}(y)=\frac{5 y+2}{3}$
$2 \quad \frac{\pi}{3}$
$3 \quad \frac{1}{10}$
(4) $\left[\begin{array}{cc}-15 & 16 \\ -1 & -29\end{array}\right] 5 \quad x=2$ and $y=-8$
(6) $\frac{1}{12} 7 \frac{3}{2}$
(8) $\frac{3}{\sqrt{26}}(4 \hat{i}-\hat{j}+3 \hat{k})$
$92 \sin \frac{\theta}{2}$
(10) $-\frac{10}{7}$

Section B

$13 \frac{1}{14}\left[\begin{array}{ll}-2 & -5 \\ -4 & -3\end{array}\right] \quad 15$ Increasing in $(-\infty,-1)$ and $(1, \infty)$ and decreasing in the interval $(-1,1)$
16 decreasing at the rate $\sqrt{3} \mathrm{~b} \mathrm{~cm}^{2} / \mathrm{s}$ or $0.2083 \quad 17 \quad \frac{\pi}{8} \log 2 \quad 18 \quad \mathrm{xy} \mathrm{cos} \frac{\mathrm{y}}{\mathrm{x}}=\mathrm{C}$
$19 \Rightarrow \mathrm{yx}+\tan ^{-1} \mathrm{x}=\frac{\pi}{4}$
$21 \overrightarrow{\mathrm{r}} \cdot(33 \hat{\mathrm{i}}+45 \hat{j}+50 \hat{k})-41=0$
$22 \frac{2}{3}$ or 3 times

Section C

24 the point $(2,2)$ on the curve $y^{2}=2 x$ is at a minimum distance from the point $(1,4)$
$25-2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{x} \sqrt{1-x}+C$
$26 \frac{5}{2}\left[\sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)+\sin ^{-1}\left(\frac{1}{\sqrt{5}}\right)\right]-\frac{1}{2}$
$278 x+y-26 z+6=0$
28 (i) $\left(\frac{2}{5}\right)^{6}$ (ii) $7\left(\frac{2}{5}\right)^{4}$ (iii) $1-\left(\frac{2}{5}\right)^{6}$ (iv) $20\left(\frac{2}{5}\right)^{3}\left(\frac{3}{5}\right)^{3}$

29 if 2 kg of food X and 4 kg of food Y are used. The minimum cost C will be Rs 112

