

- Please check that this question paper contains 4 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 30 questions.

General Instructions :-

1. Please check that this question paper contains 3 printed pages.
2. All questions are compulsory.
3. The question paper consists of 34 questions divided into four sections A, B and $C \& D$.Section A contains 10 multiple choice type of questions of 1 marks each. Section B is of 8 questions of 2 marks each, Section C is of 10 questions of 3 marks each and Section D is of 6 questions of 4 marks each .
4. Write the serial number of the question before attempting it.
5. If you wish to answer any question already answered, cancel the previous answer.

Pre-Board Examination 2010-11

Time: 3 hrs.
M.M.: 80

CLASS - X MATHEMATICS

Section A

Q. 1	If one root of the equation $a x^{2}+b x+c=0$ is three times the other, then (a) $2 b^{2}=9 a c$ (b) $b^{2}=16 a c$ (c) $b^{2}=a c$ (d) $3 b^{2}=16 a c \quad$. Ans d Q. 2All Aces, Jacks and Queens are removed from a deck of playing cards. One card is drawn at random from the remaining cards. then the probability that the card drawn is not a face card. (A) $1 / 10$ (B) $1 / 9$ (C) $\frac{\mathbf{9}}{\mathbf{1 0}}$ (D) none Ans c Q.3Two tangents TP and TQ are drawn from an external point T to a circle with centre at O, as shown in Fig. 2. If they are inclined to each other at an angle of 100° then

Fig. 2
(A) 60°
(B) 110°
(C) 100°
(D) 80°
Ans d

Q.4	If the numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e form an AP, then the value of $a-4 b+6 c-4 d+e$ is (a) 1 (b) 2 (c) 0 (d) none of these Ans : c
Q.5	What is the distance between two parallel tangents of a circle of radius 4 cm ? (A) 12 cm (B) 4 cm (C) 8 cm (D) none Ans c

TARGET MATHEMATICS by:- AGYAT GUPTA

(Take $\pi=22 / 7$)

n
(A)
(C) 66 cm
(D) none Ans a
Q. 7 If α, β are roots of the equation $x^{2}+5 x+5=0$, then equation whose roots are $\alpha+1$ and $\beta+1$ is
(a) $x^{2}+5 x-5=0$
(b) $x^{2}+3 x+5=0$
(c) $x^{2}+3 x+1=0$
(d) none of these
Ans.c
$\left.\begin{array}{|l|l}\hline \text { Q.8 } & \begin{array}{l}\text { The length of the tangent from a point A at a distance of } 5 \mathrm{~cm} \text { from the centre of } \\ \text { the circle is } 4 \mathrm{~cm} \text {. What will be the radius of the circle? } \\ \text { (A) } 3 \mathrm{~cm} \\ \text { (B) } 4 \mathrm{~cm} \\ \text { (C) } 3 \mathrm{~m}\end{array} \\ \text { (D) none Ans a }\end{array}\right]$
(a) $378 \pi \mathrm{~cm}^{2}$
(b) $2268 \pi \mathrm{~cm}^{2}$
(c) $378 \mathrm{~cm}^{2}$
(d) none of these
Ans.a
Q.10 An electrician has to repair an electric fault on a pole of height 6 m . he needs to reach a point 2.54 m below the top of the pole. What should be the length of ladder that he should use which when inclined at an angle of 60° to the horizontal would enable him to reach the desired point? $\quad($ take $\sqrt{3}=1.73$)
(a) 3.46 m
(b) 4 m
(c) 5.19 m
(d) 7.5 m
Ans.b

Section B

Q.11 In what ratio does the point $\mathrm{P}(2,-5)$ divide the line segment joining $\mathrm{A}(-3,5)$ and $B(4,-9)$?
Sol.

Let $\mathrm{AP}: \mathrm{PB}=\boldsymbol{k}: 1$
Coordinates of $\mathrm{P}=$ Coordinates of P
$\left(\frac{4 k-3}{k+1}, \frac{-9 k+5}{k+1}\right)=(2,-5) \ldots$. (Using Section formula)
$\therefore \frac{4 k-3}{k+1}=\frac{2}{1}$
$\Rightarrow 4 \mathrm{k}-3=2 \mathrm{k}+2 \Rightarrow \mathbf{4 k}-\mathbf{2 k}=\mathbf{2}+\mathbf{3}$
$\Rightarrow 2 \mathrm{k}=5 \Rightarrow \boldsymbol{k}=5 / 2$
\therefore Required Ratio $=\mathrm{k}: 1=5 / 2: 1=5: 2$
Q. 12 PQRS is a square land of side 28 m , Two semicircular grass covered portions are to be made on two of its opposite sides as shown in Figure 4. How much area will be left uncovered? (Take $\pi=22 / 7$)

Fig. 4

[^0]
TARGET MATHEMATICS by:- AGYAT GUPTA Page 3 of 10

	$\begin{aligned} \text { Sol. } & \text { Area left uncovered } \\ & =\text { Area (square PQRS) }-2 \text { Area (semicircle PAQ) } \\ & =(28 \times 28) \mathrm{m}^{2}-2\left(\frac{\pi}{2}(14)^{2}\right) \mathrm{m}^{2} \\ & =\left(784-\frac{22}{7} \times 14 \times 14\right) \mathrm{m}^{2} \quad\left[\begin{array}{l} \because \text { Ar.of Square }=(\text { (side })^{2} \\ \text { Ar.orCicile }=\pi r^{2} \\ \text { Side } 28 \mathrm{~m} \\ \text { Radius }=r=\frac{28}{2}=14 \mathrm{~m} \end{array}\right] \\ & =(784-616) \mathrm{m}^{2} \\ & =168 \mathrm{~m}^{2} \end{aligned}$
Q. 13	Prove that the point $(\mathrm{a}, 0),(0, \mathrm{~b})$ and $(1,1)$ are collinear if $\frac{1}{a}+\frac{1}{b}=1$. OR Find a point on the y-axis which is equidistant from the points $A(6,5)$ and $B(-4,3)$. Sol. Let $(0, y)$ be a point on the y-axis equidistant from $A(6,5)$ and $B(-4,3)$ $\begin{array}{rlrl} \Rightarrow \mathrm{PA} & =\sqrt{(6-0)^{2}+(5-y)^{2}} & \\ & =\sqrt{y^{2}-10 y+61} & \cdots\left[\begin{array}{l} \text { Using } \\ \text { Distance } \\ \text { formula } \end{array}\right] \\ \mathrm{PB} & =\sqrt{(-4-0)^{2}+(3-y)^{2}} & \\ & =\sqrt{y^{2}-6 y+25} \end{array}$ Now, PA = PB $\Rightarrow(\mathrm{PA})^{2}=(\mathrm{PB})^{2} \ldots$ (Squaring both sides) $\begin{aligned} & \Rightarrow \boldsymbol{y}^{2}-\mathbf{1 0 y}+61=\boldsymbol{y}^{2}-\boldsymbol{b} \boldsymbol{y}+25 \Rightarrow \mathrm{y}^{2}-10 \mathrm{y}-\mathrm{y}^{2}+6 y=25-61 \\ & \Rightarrow-4 y=-36 \Rightarrow y=9 \end{aligned}$ \therefore Required point is $(0,9)$
Q. 14	A bag contains 5 red balls, 8 green balls and 7 white balls. One ball is drawn at random from the bag. Find the probability of getting : (i) a white ball or a green ball. (ii) neither a green ball nor a red ball. Sol. Total number of balls $=5+8+7=20$ (i) $\mathrm{P}($ white or green ball $)=\frac{15}{20}=\frac{3}{4}$ (ii) P (neither green nor red) $=\frac{7}{20}$
Q. 15	Find the area of the shaded region of Fig. 8, if the diameter of the circle with centre O is 28 cm and $A Q=\frac{\mathbf{1}}{\mathbf{4}} \mathrm{AB}$. Fig. 8 Sol. Diameter $\mathrm{AQ}=1 / 4 \times 28=7 \mathrm{~cm}$ $\Rightarrow \boldsymbol{r}=\frac{7}{2} \mathrm{~cm}$ Diameter $\mathrm{QB}=\frac{3}{4} \times 28=21 \mathrm{~cm}$ $\Rightarrow \mathrm{R}=\frac{21}{2} \mathrm{~cm}$ Area of shaded region $=\frac{1}{2}\left(\pi r^{2}+\pi R^{2}\right)$ $\begin{aligned} & =\frac{\pi}{2}\left(r^{2}+\mathrm{R}^{2}\right) \\ & =\frac{1}{2} \cdot \pi\left[\left(\frac{7}{2}\right)^{2}+\left(\frac{21}{2}\right)^{2}\right] \end{aligned}$

$=\frac{1}{2} \times \frac{22}{7} \times\left(\frac{49}{4}+\frac{441}{4}\right)$
$=\frac{1}{2} \times \frac{22}{7} \times\left(\frac{49+441}{4}\right)$
$=\frac{11}{7} \times \frac{490}{4}=\frac{770}{4}=192.5 \mathrm{~cm}^{2}$.

Q.16	A circle touches the side $B C$ of a $\triangle \mathrm{ABC}$ at a point \mathbf{P} and touches AB and AC when produced at \mathbf{Q} and \mathbf{R} respectively. Show that: $\mathbf{A Q}=\frac{\mathbf{1}}{2}($ Perimeter of $\triangle \mathbf{A B C})$.
Q.17	Solve for $\mathrm{x}: \frac{x-1}{x-2}+\frac{x-3}{x-4}=3 \frac{1}{3}(x \neq 2,4)$. Ans $x=5, \frac{5}{2}$
$\mathbf{Q} 18$	

Q. 18	Determine an A.P. whose $3^{\text {rd }}$ term is 16 and when $5^{\text {th }}$ term is subtracted from the $7^{\text {th }}$ term, we get 12 . Sol. Let the A.P. be $a, a+d, a+2 d, \ldots \ldots$. \boldsymbol{a} is the first term and \boldsymbol{d} is the common difference Using $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}$ A.T.Q. $\boldsymbol{a}+2 \boldsymbol{d}=16\left(\boldsymbol{a}_{3}=16\right)$...(ii) $(a+6 d)-(a+4 d)=12\left(a_{7}-a_{s}=12\right) . . .(i i)$ From (ii), $a+\mathbf{6} d-\boldsymbol{a}-\mathbf{4 d}=12$ $2 \mathrm{~d}=12 \Rightarrow \mathrm{~d}=6$ Putting the value of \boldsymbol{d} in (i), we get $\boldsymbol{a}=\mathbf{1 6 - 2 d} \Rightarrow \mathrm{a}=16-2(6)=4 \therefore$ Required A.P. $=4,10,16,22, \ldots \ldots \ldots$.

Section C

Q. 19 In the given figure, O is the centre of the bigger circle and $A C$ is its diameter. Another circle with $A B$ as diameter is drawn. If $\mathrm{AC}=54 \mathrm{~cm}$ and $\mathrm{BC}=10 \mathrm{~cm}$, Find the area of the shaded region.

Ans 770cm
OR
The interior of a building is in the form of a right circular cylinder of radius 7 m and height 6 m , surmounted by a right circular cone of same radius and of vertical angle 60°. Find the cost of painting the building from inside at the rate of Rs. $30 / \mathrm{m}^{2}$.
Sol. Internal curved surface area of cylinder $=27 \pi \mathrm{rh}=(2 \pi \times 7 \times 6) \mathrm{m}^{2}$
$=\left(2 \times \frac{22}{7} \times 7 \times 6\right) \mathrm{m}^{2}$
$=264 \mathrm{~m}^{2}$ In right $\triangle \mathrm{OAB}, \frac{\mathrm{AB}}{\mathrm{OB}}=\sin 30^{\circ}$
Slant $\frac{7}{\mathrm{OB}}=\frac{1}{2}$ height of cone $(\mathrm{OB})=14 \mathrm{~m}$

Internal curved surface area of cone $=\pi r l$

TARGET MATHEMATICS by:- AGYAT GUPTA
$=\frac{22}{7} \times 7 \times 14=308 \mathrm{~m}^{2}$
Total area to be painted $=(264+308)=572 \mathrm{~m}^{2}$ Cost of painting @ Rs. 30 per $\mathrm{m}^{2}=$ Rs. (30×572)
= Rs. 17,160
Q. 20 Construct a circle whose radius is equal to 4 cm . Let P be a point whose distance from its centre is 6 cm . Construct two tangents to it from P.
Sol.

PA and PB are the required tangents.
Q. 21 If the $10^{\text {th }}$ term of an A.P. is 47 and its first term is 2 , find the sum of its first 15 terms.
Sol. Let \boldsymbol{a} be the first term and \boldsymbol{d} be the common difference of an A.P.
$\boldsymbol{a}_{10}=47, \boldsymbol{a}=2$ (Given), ...(i)
$\Rightarrow a+9 d=47\left[\because a_{n}=a+(n-1) d\right]$
$\Rightarrow 47=2+(10-1) \mathrm{d} \Rightarrow 47=2+9 \mathrm{~d} \Rightarrow \mathbf{9 d}=47-2=45$
$\therefore d=\frac{45}{9}=5$
$\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore \mathrm{S}_{15}=\frac{15}{2}[2(2)+(15-1)(5)]$
$\Rightarrow \mathrm{S}_{15}=\frac{15}{2}[4+(14)(5)]$
$\Rightarrow \mathrm{S}_{15}=\frac{15}{2}[4+7 \mathrm{C}]$
$\Rightarrow \mathrm{S}_{15}=\frac{15}{2}[74]$.
$\therefore \mathrm{S}_{15}=15(37)=555$
Q. 22 The coordinates of the vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(4,1), \mathrm{B}(-3,2)$ and $\mathrm{C}(0, \boldsymbol{k})$. Given that the area of $\triangle \mathrm{ABC}$ is 12 units 2, find the value of \boldsymbol{k}.
Sol. $\operatorname{ar}(\triangle \mathrm{ABC})=12$ units $^{2} \ldots$ (Given)
$\frac{1}{2}[4(2-\mathrm{k})+(-3)(\mathrm{k}-1)+0(1-2)]=12$ units 2
$[8-4 \mathrm{k}-3 \mathrm{k}+3]= \pm 2411-7 \boldsymbol{k}= \pm 24-7 \boldsymbol{k}= \pm 24-11$
$\boldsymbol{k}=\frac{ \pm 24-11}{-7}$
$k=\frac{-24-11}{-7} \quad k=\frac{-24-11}{-7}$
$k=\frac{+13}{-7}$
$k=\frac{-35}{-7}$
$\therefore k=\frac{-13}{7}$ $\therefore k=5$
Q. 23 The product of two consecutive odd numbers is 483. find the numbers. Ans.21,23
Q. 24 All Aces, Jacks and Queens are removed from a deck of playing cards. One card is drawn at random from the remaining cards. Find the probability that the card drawn is : (a) a face card(b) not a face card.

TARGET MATHEMATICS by:- AGYAT GUPTA Page 6 of 10

	Sol. Total number of cards $=52$ Cards removed (all Aces, Jacks and Queens) = 12 \therefore Remaining cards (Total) $=52-12=40$ Remaining face cards $=4$ (all four kings) $P($ event $)=\frac{\text { Total number of favourable outcomes }}{\text { Total number of possible outcomes }}$ $P($ getting a face card $)=\frac{4}{40}=\frac{1}{10}$ $P($ not getting a face card $)=1-\frac{1}{10}\left[\begin{array}{l}\because P(\text { not } A) \\ =1-P(A)\end{array}\right]=\frac{\mathbf{9}}{\mathbf{1 0}}$.
Q. 25	In Fig. 3 the incircle of $\triangle A B C$ touches the sides $B C, C A$ and $A B$ at D, E, and F respectively. If $A B=A C$, prove that $B D=C D$. Sol. Given : The incircle of $\triangle A B C$ touches the sides $B C, C A$ and $A B$ at D, E and F respectively. $\mathrm{AB}=\mathrm{AC}$ To prove : $\mathrm{BD}=\mathrm{CD}$ Proof: Since the lengths of tangents drawn from an external point to a circle are equal $\begin{align*} & \therefore \text { We have } \mathrm{AF}=\mathrm{AE} \tag{i}\\ & \mathrm{BF}=\mathrm{BD} \tag{ii}\\ & \mathrm{CD}=\mathrm{CE} \tag{iii} \end{align*}$ Adding (i), (ii) and (iii), we get $\begin{aligned} & A F+B F+C D=A E+B D+C E \\ & \Rightarrow A B+C D=A C+B D \\ & B u t A B=A C, \ldots \text { (Given) } \\ & \therefore C D=B D \end{aligned}$
Q. 26	A solid is composed of a cylinder with hemispherical ends. If the whole length of the solid is 100 cm and the diameter of the hemispherical ends is 28 cm , find the cost of polishing the surface of the solid at the rate of 5 paise per sq cm . Sol. Radius of hemisphere, $\boldsymbol{r}=14 \mathrm{~cm}$ Length of cylindrical part (h) $=[100-2(14)]=72 \mathrm{~cm}$ Radius of cylindrical part = Radius of hemispherical ends, $\boldsymbol{r}=14 \mathrm{~cm}$ Total area to be polished $=2$ (C.S.A. of hemispherical end) + C.S.A. of cylinder $2\left(2 \pi r^{2}\right)+2 \pi r h=2 \pi r(2 r+h)$

TARGET MATHEMATICS by:- AGYAT GUPTA Page 7 of 10
$=2 \times \frac{22}{7} \times 14(2 \times 14+72)$
$=88(28+72)=8800 \mathrm{~cm}^{2}$ Cost of polishing the surface
$=8800 \times 0.05=$ Rs. 440
Q. 27 Find the area of the quadrilateral whose vertices taken in order are $\mathrm{A}(-5,-3)$, $B(-4,-6), C(2,-1)$ and $D(1,2)$.
Sol. Construction : Join B Proof : Area of quad. $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABD}+$ Area of $\triangle B C D$ Using area of Δ
D.
D. $\quad{ }^{(1,2)}$

$\stackrel{\prime}{=} \frac{1}{2}\left[x_{1}\left(\boldsymbol{y}_{2}-y_{3}\right)+\boldsymbol{x}_{2}\left(\boldsymbol{y}_{3}-\boldsymbol{y}_{1}\right)+x_{3}\left(\boldsymbol{y}_{1}-\boldsymbol{y}_{2}\right)\right] \operatorname{ar}(\Delta \mathrm{ABD})$
$=\frac{1}{2}[-5(-6-2)-4(2+3)+1(-3+6)]$
$=\frac{1}{2}-[-5(-8)-4(5)+1(3)]=\frac{1}{2}(40-20+3)$
$=\frac{1}{2}(23)=\frac{23}{2}$ units $^{2} \operatorname{ar}(\mathrm{ABCD})$
$=\frac{1}{2}[-4(-1-2)+2(2+6)+1(-6+1)]=\frac{1}{2}[4(-3)+2(8)+1(-5)]$
$=\frac{1}{2}(12+16-5)=\frac{1}{2}(23)=\frac{23}{2}$ units 2
\therefore Area of quad. $\mathrm{ABCD}=\left(\frac{23}{2}+\frac{23}{2}\right)=23$ units 2
Q. 28 A vertical tower stand on a horizontal plane and is surmounted by a vertical flagstaff of height h. at a point on the plane, the angle of elevation of the bottom of the flagstaff is α and that of the top of the flagstaff is β. Prove that the height of the tower is $\frac{h \tan \alpha}{\tan \beta-\tan \alpha}$.

Section D

Q. 29 A container (open at the top) made up of a metal sheet is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find:
(i) the cost of milk when it is completely Filled with milk at the rate of Rs. 15 per litre.
(ii) the cost of metal sheet used, if it costs Rs. 5 per $100 \mathrm{~cm}^{2}$. (Take $\pi=$ 3.14)

Sol. The container is in the shape of a frustum of a cone
$\boldsymbol{h}=16 \mathrm{~cm}, \boldsymbol{r}=8 \mathrm{~cm}, \mathrm{R}=20 \mathrm{~cm}$

Volume 01 the container
$=\frac{1}{3} \times \pi h\left(\mathrm{R}^{2}+\mathrm{Rr}+\mathrm{r}^{2}\right)$
$=\frac{1}{3} \times 3.14 \times 16\left[(20)^{2}+20(8)+(8)^{2}\right] \mathrm{cm}^{3}$
$=\frac{1}{3} \times 3.14 \times 16(400+160+64) \mathrm{cm}^{3}$

Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.

TARGET MATHEMATICS by:- AGYAT GUPTA Page 8 of 10

	$\begin{aligned} & =\left(\frac{1}{3} \times 3.14 \times 16 \times 624\right) \mathrm{cm}^{3} \\ & =(3.14 \times 3328) \mathrm{cm}^{3} \quad\left[\begin{array}{l} 1 \text { litre }=1000 \mathrm{~cm}^{3} \\ =10449.92 \mathrm{~cm}^{3} \\ =\frac{10449.9}{1000} \text { litres } \quad\left[\mathrm{cm}^{3}=\frac{1}{1000}\right. \end{array}\right] \\ & =10.45 \text { litres (approx.) (i) Cost of milk }=10.45 \times \text { Rs. } 15 \\ & =\text { Rs. } 156.75 \text { Now, slant height of the frustum of cone } \\ & 1=\sqrt{h^{2}+(\mathrm{R}-r)^{2}}=\sqrt{16^{2}+(20-8)^{2}} \\ & =\sqrt{256+144}=\sqrt{400}=20 \mathrm{~cm} . \end{aligned}$ Total surface area of the container $\begin{aligned} & =\left[\pi \boldsymbol{l}(\mathrm{R}+\mathrm{r})+\pi \mathrm{r}^{2}\right] \\ & =\left[3.14 \times 20(20+8)+3.14(8)^{2}\right] \mathrm{cm}^{2} \\ & =3.14[20 \times 28+64] \mathrm{cm}^{2} \\ & =3.14 \times 624 \mathrm{~cm}^{2} \\ & =1959.36 \mathrm{~cm}^{2} \end{aligned}$ (ii) Cost of metal sheet used $=\text { Rs. }\left[1959.36 \times \frac{5}{100}\right]=\frac{9796.8}{100}=\text { Rs. } 97.968$ $\text { = Rs. } 98 \text { (approx.) }$
Q. 30	From the top and foot of a tower 40 m high, the angle of elevation of the top of a lighthouse is found to be 30° and 60° respectively. Find the height of the lighthouse. Also find the distance of the top of the lighthouse from the foot of the tower. Sol. Let $\mathrm{AE}=\boldsymbol{h} \mathrm{m}$ and $\mathrm{BE}=\mathrm{CD}=\mathrm{x} \mathrm{m}$ $\begin{align*} & \therefore \frac{x}{h}=\cot 30^{\circ} \\ & \Rightarrow \frac{x}{h}=\sqrt{3} \\ & \Rightarrow \mathrm{x}=\mathrm{h} \sqrt{ } 3 \tag{i}\\ & \Rightarrow \mathrm{BE}=\mathrm{CD}=\boldsymbol{h} \sqrt{ } 3 \mathrm{~m} \end{align*}$ In rt. $\triangle A D C, \frac{A D}{C D}=\tan 60^{\circ}$ $\Rightarrow \frac{h+40}{x}=\sqrt{3}$ $\Rightarrow h+40=\sqrt{ } 3 x$ $\Rightarrow \mathrm{h}+40=\sqrt{3} \times h \sqrt{3} \quad \ldots$ [From (i) $\Rightarrow 40=3 \mathrm{~h}-\mathrm{h}$ $\Rightarrow 2 \mathrm{~h}=40$ $\Rightarrow \mathrm{h}=20 \mathrm{~m}$ \therefore Height of lighthouse $=20+40=60 \mathrm{~m}$ Inrt. $\triangle A D C, \frac{A D}{A C}=\sin 60^{\circ}$ $\begin{aligned} & \frac{60}{A C}=\frac{\sqrt{3}}{2} \Rightarrow \sqrt{3} A C=60 \times 2 \\ & \Rightarrow A C-60 \times 2 / \sqrt{3} \end{aligned}$

TARGET MATHEMATICS by:- AGYAT GUPTA Page 9 of 10

	$\begin{aligned} & \Rightarrow A C=60 \times \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\ & \Rightarrow A C=\frac{60 \times 2 \times \sqrt{3}}{3} \Rightarrow A C=40 \sqrt{ } 3 \mathrm{~m} \end{aligned}$ Hence the distance of the top of lighthouse from the foot of the tower $=40 \sqrt{ } 3 \mathrm{~m}$
Q. 31	Prove that sum of n term of A. P. is $S_{n}=\frac{n}{2}[2 a+(n-1) d]$. OR A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows : Rs. 200 for first day, Rs. 250 for second day, Rs. 300 for third day and so on.If the contractor pays Rs. 27,750 as penalty, find the number of days for which the construction work is delayed. Sol. Let the delay in construction work be for \boldsymbol{n} days. Here $\mathrm{a}=200, \boldsymbol{d}=250-200=50, \mathrm{~S}_{\mathrm{n}}=27,750$ $\begin{aligned} & \mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) d] \\ & \therefore 27,750=\frac{n}{2}[2 \times 200+(\boldsymbol{n}-1) 50] 27,750=\frac{50 n}{2}[8+(\mathrm{n}-1)] \\ & \frac{27,750}{25}=\mathrm{n}(8+\mathrm{n}-1) \\ & 1110=\mathrm{n}(\mathrm{n}+7) \Rightarrow 0=\mathrm{n}^{2}+7 \mathrm{n}-1110 \\ & \Rightarrow \boldsymbol{n}^{2}+\mathbf{7 n}-1110=0 \\ & \Rightarrow \boldsymbol{n}^{2}+\mathbf{3 1} \boldsymbol{n}-30 \mathrm{n}-1110=0 \\ & \Rightarrow \mathrm{n}(\mathrm{n}+37)-30(\mathrm{n}+37)=0 \\ & \Rightarrow(\mathrm{n}+37)(\mathrm{n}-30)=0 \\ & \Rightarrow \boldsymbol{n}+37=0 \text { or } \boldsymbol{n}-30=0 \\ & \text { Rejecting } \boldsymbol{n}=-37, \boldsymbol{n}=30 \\ & (\therefore \text { Number of days can not be negative) } \\ & \therefore \text { Construction work was delayed for } 30 \text { days } \end{aligned}$
Q. 32	If two tangents are drawn to a circle from an external point, then (i) They subtend equal angles at the centre. (ii) They are equally inclined to the segment, joining the centre to that point.
Q.	Solve for $\mathrm{x}: \frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}: a \neq 0, b \neq 0, x \neq 0$. Ans $=-\mathrm{a} \&-\mathrm{b}$ OR A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs. 90 find the number of articles produced and the cost of each article. Ans. Articles 6,15
Q. 34	An iron pillar has lower part in the form of a right circular cylinder and the upper part in the form of a right circular cone. The radius of the base of each of the cone and the cylinder is 8 cm . The cylindrical part is 240 cm high and the conical part is 36 cm high. Find the weight of the pillar if $1 \mathrm{~cm}^{3}$ of iron weighs 7.5 grams. (Take $\pi=22 / 7$) Sol. Radius of base of the cylinder, $(\mathrm{r})=8 \mathrm{~cm}$ Radius of base of the cone, $(\boldsymbol{r})=8$ cm Height of cylinder, $\begin{aligned} (h)= & 240 \mathrm{~cm} \text { Height of cone }(\mathrm{H}) \\ & =36 \mathrm{~cm} \end{aligned}$

	Total volume of the pillar = Volume of cylinder + Volume of cone $\begin{aligned} & =\pi r^{2} h+\frac{1}{3} \pi r^{2} \mathrm{H} \\ & =\pi r^{2}\left(h+\frac{1}{3} \mathrm{H}\right) \\ & =\frac{22}{7} \times 8 \times 8\left(240+\frac{1}{3}(36)\right) \\ & \frac{1408}{7}(240+12) \mathrm{cm}^{3} \frac{1408}{7} \times 252=50688 \mathrm{~cm}^{3} \\ & \therefore \text { Weight of the pillar }=50688 \times \frac{7.5(\text { gms. })}{1000} \mathrm{~kg} \\ & \frac{380160}{1000}=380.16 \mathrm{~kg} \end{aligned}$
	******************__ *

[^0]: P.T.O.

