CLASS XII SAMPLE PAPER MATHS

SECTION A

(Questions 1 to 10 carry 1 mark each)

1. Let * be the binary operation on N given by a $\mathrm{b}=\mathrm{HCF}$ of a and b . Find $20 * 16$
2. What is $\operatorname{Sin}^{-1}(\operatorname{Sin} 7 \pi / 6)$?
3. Find x and y if $\left[\begin{array}{cc}2 x+y & 3 \\ 4 & x+2 y\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$
4. If A is a square matrix of order 3 and $\|\operatorname{adj} A\|=64$ then find $\| A \mid$.
5. Find $\int \frac{1+\operatorname{Cos} x}{x+\operatorname{Sin} x} d x$.
6. Find the $\operatorname{adj} A$ of $\left[\begin{array}{cc}2 & 3 \\ -4 & 5\end{array}\right]$.
7. Evaluate: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{10} \sin ^{-1} x d x$
8. Find the value of α so that $\vec{a}=\alpha i+2 j+k$ is perpendicular to $\vec{b}=4 i-9 j+2 k$
9. Find the unit vector in the direction of $\vec{a}+\vec{b}$ if $\vec{a}=\hat{\imath}+2 \hat{\jmath}-4 \hat{k}$ and $\vec{b}=\hat{\imath}-\hat{\jmath}-5 \hat{k}$.
10. Find k if the lines $\frac{x-1}{2}=\frac{y+1}{3 k}=\frac{z-4}{5}$ and $\frac{x+1}{1}=\frac{1-y}{2}=\frac{z+1}{3}$ are perpendicular.

SECTION B(Q. 11 to 22 carry 4 marks each)

11. Show that the relation R on NXN defined by (a, b) $R(c, d) \Leftrightarrow a+d=b+c$ is an equivalence relation. (or)

Let $f: R \rightarrow R$ be a function defined by $f(x)=4+3 x$. Show that f is invertible and find the inverse of f.
12. Prove that $\left.\left.\tan ^{-1}(\sqrt{1+x}-\sqrt{1-x}) / \sqrt{1+x}+\sqrt{1-x}\right)\right)=\pi / 4-1 / 2 \cos ^{-1} \mathrm{x}$
13. Using properties of determinants Prove that $\left|\begin{array}{ccc}-\alpha^{2} & \alpha \beta & \alpha \gamma \\ \beta \alpha & -\beta^{2} & \beta \\ \gamma \alpha & \beta \gamma & -\gamma^{2}\end{array}\right|=4 \alpha^{2} \beta^{2} \gamma^{2}$.
14. Test the continuity of the following function at $\mathrm{x}=0$,
$f(x)=\left\{\begin{array}{l}\frac{5 x+|x|}{3 x} \\ 2 \text { if } x=0\end{array}\right.$ if $x \neq 0$
If $x=a(t+\operatorname{Sint}), y=a(1-$ Cost $)$, show that $y^{\prime \prime}=1 / a$, at $t=\frac{\pi}{2^{*}}$ (or) If $x^{p} y^{q}=$ $(x+y)^{p+q}$, Prove that $y^{\prime}=y / x$.
15. Find the intervals where the function $f(x)=2 x^{3}-9 x^{2}+12 x+30$ is a) increasing b) decreasing.
16. Evaluate: $\int \frac{x^{4}+2}{x^{2}-1} d x$
(or)
Evaluate as sum of limits $\int_{1}^{3}\left(x^{2}-x\right) d x$
17. Solve the differential equation $x^{2} y^{\prime}=x^{2}-2 y^{2}+x y$
(or)
Form the differential equation representing the family of ellipses having foci on x-axis and centre at the origin.

Solve the differential equation $\operatorname{Cos}^{2} x y^{\prime}+y=\tan x$.
i.
18. Three vectors \vec{a}, \vec{b}, and \vec{c} satisfying the condition $\vec{a}+\vec{b}+\vec{c}=0$. Evaluate the quantity $\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ if $|\vec{a}|=1,|\vec{b}|=4,|\vec{c}|=2$.
19. Find the shortest distance between the lines $\vec{r}=1+j+k(2 i-j+k)$ and $\vec{r}=(2 i+j-k)+$ $p(3 i-5 j+2 k)$.
20. In a factory which manufactures bolts, machine A, B and C respectively $25 \%, 35 \%$ and 40% of the bolts, Of their output $\mathrm{s} 5,4$, and 2 percent are respectively defective bolts. A nolt is drawn random from the product and is found to be defective. What is the probability that it is manufactured from machine A?

SECTION C (Each question carries 6 marks)

21. Find the inverse of $\left|\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right|$ using elementary transformation. (or) if $A=$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right] \text { find } A^{-1} \text { and hence solve the equations } 2 x+3 y+z=11,-3 x+2 y+z=4} \\
5 x-4 y-2 z=-9
\end{gathered}
$$

24 .Find the maximum area of the isosceles triangle inscribed in an ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$, whose vertex lies along the major axis. (or) Show that the maximum value of the cylinder which can be inscribed in a sphere of radius $5 \sqrt{3} \mathrm{~cm}$ is $500 \pi \mathrm{~cm}^{3}$.
25.Prove that $\int_{0}^{\frac{3}{2}} \operatorname{Sin} 2 x, \log \tan x, d x$.
26. Make a rough sketch of the region given below and find its area using integration. \{ (x, y) : $\left.0 \leq y \leq 2 x+3,0 \leq y \leq x^{2}+3\right\}$.
27. Find the foot of the perpendicular and the perpendicular distance of the point $(3,2,1)$ from the plane $2 x-y+z+1=0$. Find the image of the point in the plane.
28. From a lot of 30 bulbs which includes 6 defective, a sample of 4 bulbs is drawn at random with replacement. Find the mean and variance of the number of defective bulbs.
29. A furniture firm manufactures chairs and tables each requiring the use of three machines A, B and C. Production of the chair requires 2 hrs on machine $A, 1 \mathrm{hr}$ on machine B, and 1 hr on machine C. Each table requires 1 hr on machine $\mathrm{A}, 1 \mathrm{hr}$ on machine B and 3 hrs on machine C . The profit obtained by selling one chair is Rs. 30 while by selling one table Rs. 60 . The total time available per week on machine A is 70 hrs , machine B 40 hrs , and on machine C 90 hrs. How many chairs and tables should be made per week so as to maximize profit? Formulate the problem as LPP and solve it graphically.

