

CLASS XII SAMPLE PAPER MATHS

SECTION A

(Questions 1 to 10 carry 1 mark each)

- 1. Let * be the binary operation on N given by a *b = HCF of a and b. Find 20*16
- 2. What is $\operatorname{Sin}^{-1}(\operatorname{Sin} 7\pi/6)$?
- 3. Find x and y if $\begin{bmatrix} 2x+y & 3\\ 4 & x+2y \end{bmatrix} = \begin{bmatrix} 2 & 3\\ 4 & 5 \end{bmatrix}$
- 4. If A is a square matrix of order 3 and |adj A| = 64 then find |A|.
- 5. Find $\int \frac{1+Cosx}{x+Sinx} dx$.
- 6. Find the adj A of $\begin{bmatrix} 2 & 3 \\ -4 & 5 \end{bmatrix}$.
- 7. Evaluate: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{10} \sin^{-1}x \, dx$
- 8. Find the value of α so that $\vec{a} = \alpha i + 2j + k$ is perpendicular to $\vec{b} = 4i 9j + 2k$
- 9. Find the unit vector in the direction of $\vec{a} + \vec{b}$ if $\vec{a} = \hat{i} + 2\hat{j} 4\hat{k}$ and $\vec{b} = \hat{i} \hat{j} 5\hat{k}$.
- 10. Find k if the lines $\frac{x-1}{2} = \frac{y+1}{3k} = \frac{z-4}{5}$ and $\frac{x+1}{1} = \frac{1-y}{2} = \frac{z+1}{3}$ are perpendicular.

SECTION B(Q. 11 to 22 carry 4 marks each)

11. Show that the relation R on NXN defined by (a,b) R (c,d) \Leftrightarrow a+d= b+c is an equivalence

relation. (or)

Let $f : R \rightarrow R$ be a function defined by f(x) = 4 + 3x. Show that f is invertible and find the inverse of f.

12. Prove that $\tan^{-1}(\sqrt{1+x} - \sqrt{1-x})/\sqrt{1+x} + \sqrt{1-x}) = \pi/4 - \frac{1}{2} \cos^{-1}x$

13. Using properties of determinants Prove that
$$\begin{vmatrix} -\alpha^2 & \alpha\beta & \alpha\gamma \\ \beta\alpha & -\beta^2 & \beta\gamma \\ \gamma\alpha & \beta\gamma & -\gamma^2 \end{vmatrix} = 4\alpha^2\beta^2\gamma^2.$$

14. Test the continuity of the following function at x = 0,

$$f(x) = \begin{cases} \frac{5x + |x|}{3x} & \text{if } x \neq 0\\ 2 & \text{if } x = 0 \end{cases}$$

If x = a (t + Sint), y = a (1 - Cost), show that y'' = 1/a, at $t=\frac{\pi}{2}$. (or) If $x^p y^q = (x + y)^{p+q}$, Prove that y' = y/x.

15. Find the intervals where the function f (x) =2x³ - 9x² + 12x + 30 is a) increasing b) decreasing. 16. Evaluate: $\int \frac{x^4+2}{x^2-1} dx$

(or)

Evaluate as sum of limits $\int_{1}^{3} (x^{2} - x) dx$

17. Solve the differential equation $x^2y' = x^2-2y^2 +xy$

(or)

Form the differential equation representing the family of ellipses having foci on x-axis and centre at the origin.

Solve the differential equation $\cos^2 x y' + y = \tan x$.

- 18. Three vectors \vec{a} , \vec{b} , and \vec{c} satisfying the condition $\vec{a} + \vec{b} + \vec{c} = 0$. Evaluate the quantity $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ if $|\vec{a}| = 1$, $|\vec{b}| = 4$, $|\vec{c}| = 2$.
- 19. Find the shortest distance between the lines $\vec{r} = 1 + j + K (2i j + k)$ and $\vec{r} = (2i + j k) + p(3i 5j + 2k)$.
- 20. In a factory which manufactures bolts, machine A, B and C respectively 25%, 35% and 40% of the bolts, Of their output s 5,4, and 2 percent are respectively defective bolts. A nolt is drawn random from the product and is found to be defective. What is the probability that it is manufactured from machine A?

SECTION C (Each question carries 6 marks)

21. Find the inverse of $\begin{vmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{vmatrix}$ using elementary transformation. (or) if A = $\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$ find A⁻¹ and hence solve the equations 2x+3y+z= 11, -3x+2y+z=4, 5x-4y-2z = -9

24 .Find the maximum area of the isosceles triangle inscribed in an ellipse $x^2/a^2 + y^2/b^2 = 1$, whose vertex lies along the major axis. (or) Show that the maximum value of the cylinder which can be inscribed in a sphere of radius $5\sqrt{3}cm$ is 500π cm³.

25.Prove that $\int_0^{\frac{\pi}{2}} Sin2x \cdot \log tanx \cdot dx$.

26. Make a rough sketch of the region given below and find its area using integration. { (x,y) : $0 \le y \le 2x+3, 0 \le y \le x^2+3$ }.

27. Find the foot of the perpendicular and the perpendicular distance of the point (3,2,1) from the plane 2x-y+z+1=0. Find the image of the point in the plane.

28. From a lot of 30 bulbs which includes 6 defective, a sample of 4 bulbs is drawn at random with replacement. Find the mean and variance of the number of defective bulbs.

29. A furniture firm manufactures chairs and tables each requiring the use of three machines A,B and C. Production of the chair requires 2 hrs on machine A, 1 hr on machine B, and 1 hr on machine C.Each table requires 1 hr on machine A, 1 hr on machine B and 3 hrs on machine C. The profit obtained by selling one chair is Rs. 30 while by selling one table Rs. 60. The total time available per week on machine A is 70 hrs, machine B 40 hrs, and on machine C 90 hrs. How many chairs and tables should be made per week so as to maximize profit? Formulate the problem as LPP and solve it graphically.