# D.V.R'S INSTITUTE OF MATHEMATICS <br> CHENNAI - 600050 (9940116934) <br> XII CBSE - MATHEMATICS MODEL PAPER <br> <br> 2004-2005-SET-1 

 <br> <br> 2004-2005-SET-1}

## SECTION - A ( $6 \times 1=6$ Marks)

1. Evaluate $\tan ^{-1}\left(\frac{3+4 x}{4-3 x}\right)$ I; $\mathrm{x}<4 / 3$.
2. On the set $Q^{+}$of all positive rational numbers a binary operation * is defined by $a * b=\frac{a b}{2}$ for all $a, b \in Q^{+}$, Find the identity element.
3. Verify for $\left(A^{-1}\right)^{-1}=A$, for $A=\left(\begin{array}{cc}2 \sin \theta & \cos \theta \\ -2 \cos \theta & \sin \theta\end{array}\right)$
4. Find the projection of $7 \vec{i}+\vec{j}-4 \vec{k}$ on $2 \vec{i}+6 \vec{j}+3 \vec{k}$.
5. Write the value of $\hat{i} x(\hat{j} x \hat{k})+\hat{j} x(\hat{k} x \hat{i})+\hat{k} x(\hat{i} x \hat{j})$.
6. Find the perpendicular distance from the point $(1,2,3)$ to the plane $3 x+2 y+z+10=0$.

## SECTION - B ( $13 \times 4=42$ Marks)

7. Evaluate $\tan ^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)$, if $\pi<x<\frac{3 \pi}{2}$.
8. In a legislative assembly election, a political group hired a public relations firm to promote its candidate in three ways, telephone, house calls and letters. The cost per contact

> Cost per contact
(in paise) is given in matrix $A$ as $A=\left[\begin{array}{c}40 \\ 100 \\ 50\end{array}\right] \begin{gathered}\text { telephone } \\ \text { House call } \\ \text { Letter }\end{gathered}$. The number of contact of each type made in two cities $X$ and $Y$ is given by $B=\left[\begin{array}{ccc}(\text { Tele } & \text { House } & \text { Letter } \\ 1000 & 500 & 5000 \\ 3000 & 1000 & 10,000\end{array}\right] Y$ Y Find the total amount spent by the group in the two cities X and Y .
9. Using properties of determinants show that $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$
10. If $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$, verify that $A^{3}-6 A^{2}+9 A-4 I=O$ and hence find $A^{-1}$.
11. Differentiate w.r.t. $x=(\sin x)^{x}+(\cos x)^{\tan x}+\sin ^{-1} \sqrt{x}$.
12. If $\mathrm{y}=\left(\tan ^{-1} \mathrm{x}\right)^{2}$, Prove that $\left(1+\mathrm{x}^{2}\right)^{2} \mathrm{y}_{2}+2 \mathrm{x}\left(1+\mathrm{x}^{2}\right) \mathrm{y}_{1}=2$.
13. Evaluate $\int \frac{\operatorname{Cos} x}{(1-\operatorname{Sin} x)(2-\operatorname{Sin} x)} \mathrm{dx}$.
14. Find a and b so that $f(x)=\left\{\begin{array}{ll}\frac{\sin (a+1) x+\sin x}{x}, & x<0 \\ c \quad x=0 \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b(x)^{\frac{3}{2}}}, & x>0\end{array}\right.$ is continuous at $x=0$.
15. Evaluate $\int x^{2} \tan ^{-1} x d x$
16. Evaluate $\int_{0}^{\frac{\pi}{2}}\left(\frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x}\right) d x$
17. If $\vec{a}=\vec{i}+\vec{j}+\vec{k}, \vec{b}=2 \vec{i}+\vec{k}, \vec{c}=2 \vec{i}+\vec{j}+\vec{k}$, and $\vec{d}=\vec{i}+\vec{j}+2 \vec{k}$ then find the magnitude and direction cosines of $(\vec{a} \bullet \vec{b})(\vec{c} \times d)$
18. A box contains 12 bulbs of which 3 are defective. If 3 bulbs are drawn from the box at random, find the probability distribution of $X$, the number of defective bulbs drawn. Hence compute the mean of $X$.
19. Find the distance of the point with position vector $-\hat{i}-5 \hat{j}-10 \hat{k}$ from the point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k})$ with the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

## SECTION - C ( $7 \times 6=42$ Marks)

20. Consider $f: R_{+} \rightarrow[-5, \propto)$ given by $f(x)=9 x^{2}+6 x-5$. Show that $f$ is invertible with $f^{-1}(y)=$ $\left(\frac{(\sqrt{\mathrm{y}+6})-1}{3}\right) .(O R)$ Let * be a binary operation defined on NXN, by $(\mathrm{a}, \mathrm{b})^{*}(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{bd})$.
Show that * is commutative and associative. Also find the identity element for * on NxN.
21. A page of a book must have $18 \mathrm{sq} . \mathrm{cm}$. of printed matter and must have 2 cm margins at the top and bottom and 1 cm . margin on each side. What dimension of the page will require the east amount of paper?
22. Find the area lying above $x$-axis and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.
23. Solve $\frac{y}{x} \cos \frac{y}{x}-\left(\frac{x}{y} \sin \frac{y}{x}+\cos \frac{y}{x}\right) d y=0$
24. Find the equation of the plane passing through the intersection of the planes $2 x+3 y-z+1=0$ $x+y-2 z+3=0$ and perpendicular to the plane $3 x-y-2 z-4=0$. Also find the inclination of this plane with $x y$-plane.
25. Assume that the chances of a patient having a heart attack is $40 \%$. It is also assumed that a meditation and yoga course reduce the risk of heart attack by $30 \%$ and prescription of certain
drugs reduces its chance by $25 \%$. At a time a patient can choose any one of two options with equal probability It is given that after going through one of two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. What are the benefits of meditation and yoga?
26. A company manufactures, two types of toys-A and B. Toy A require 4 minutes for cutting and 8 minutes for assembling and Toy B requires 8 minutes for assembling. There are 3 hours and 20 minutes available in a day for cutting and 4 hours for assemble. The profit on a piece of toy $A$ is Rs. 50 and that on toy $B$ is Rs. 60 . How many toys of each type should be made daily to have maximum profit? Solve the problem graphically.
D. Vasuraj, M.Sc., B.Ed.,
D.V.R'S Institute of Mathematics,

Chennai - 600050.
vraj626@gmail.com
9940116934

$$
0^{7 P^{3}}
$$

