06	Sample Question Paper CLASS: XII Session: 2021-22 Mathematics Term-2 Time Allowed: 2 hours Maximum Marks: 40 General Instructions: 1. This question paper contains three sections - A, B and C. Each part is compulsory. 2. Section - A has 6 short answer type (SA1) questions of 2 marks each. 3. Section B has 4 short answer type (SA2) questions of 3 marks each. 4. Section - C has 4 long answer type questions (LA) of 4 marks each. 5. There is an internal choice in some of the questions. 6. Q14 is a case-based problem having 2 sub parts of 2 marks each.	
	SECTION - A	
1.	Find $\int \log \left(x+\sqrt{x^{2}+a^{2}}\right) \mathrm{d} x$ Find $\int \frac{\sin 2 x}{a \cos ^{2} x+b \sin ^{2} x+c} \mathrm{~d} x$	2
2.	Write the sum of the order and the degree of the following differential equation: $\tan ^{-1} \sqrt{\frac{d y}{d x}}=x$	2
3.	If $\vec{p}=(5 \hat{\imath}+\lambda \hat{\jmath}-3 \hat{k})$ and $\vec{q}=(\hat{\imath}+3 \hat{\jmath}-5 \hat{k})$, then find the value of λ, so that $\vec{p}+\vec{q}$ and $(\vec{p}-\vec{q})$ are perpendicular vectors.	2
4.	Find the cartesian equation of a line which passes through the point $(1,2,3)$ and is parallel to the line $\frac{-x-2}{1}=\frac{y+3}{7}=\frac{2 z-6}{3}$	2
5.	An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?	2
6.	Given the probability that A can solve a problem is $2 / 3$ and the probability that B can solve the same problem is $3 / 5$. Find the probability that none of the two will be able to solve problem.	2
	SECTION B	
7.	Find: $\int \frac{x^{2}+1}{\left(x^{2}+4\right)\left(x^{2}+25\right)} \mathrm{d} x$	3
8.	Find the general solution of the following differential equation: $(x+y)^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ OR Find the particular solution of the following differential equation, given that, $\left(1+\mathrm{y}^{2}\right) \mathrm{d} x+\left(x-\mathrm{e}^{-\tan ^{-1} y}\right) \mathrm{d} y=0 ; y(0)=0$	3
9.	If $\|\vec{a}\|=\sqrt{26} ;\|\vec{b}\|=7$ and $\|\vec{a} \times \vec{b}\|=35$, find $(\vec{a} \cdot \vec{b})$.	3

10.	Find the shortest distance between the following lines $\begin{aligned} & \vec{r}=(2 \hat{\imath}-\hat{\jmath}-\hat{k})+\lambda(2 \hat{\imath}-5 \hat{\jmath}+2 \hat{k}) \\ & \text { and } \vec{r}=(\hat{\imath}+2 \hat{\jmath}+\hat{k})+u(\hat{\imath}-\hat{\jmath}+\hat{k}) \end{aligned}$ OR Find the vector and cartesian equation of the plane that contains the line of intersection of the planes, \vec{r}. $(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})-4=0$ and $\vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{\imath}+3 \hat{\jmath}-6 \hat{k})+8=0$.	3
	SECTION C	
11.	Evaluate: $\int_{-1}^{2}(\|x+1\|+\|x\|+\|x-1\|) \mathrm{d} x$	4
12.	Using integration, Find the area of the region between the circles $x^{2}+y^{2}=16$ and $(x-2)^{2}+y^{2}=4$. OR Using integration, Find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$	4
13.	Find the reflection of the point $(1,2,-1)$ in the plane $3 x-5 y+4 z=5$. Hence, find the distance of the point $(1,2,-1)$ from the given plane.	4
14.	CASE-BASED/DATA-BASED In a group of 400 people, 160 are smokers and non-vegetarian, 100 are smokers and vegetarian and the remaining are non-smokers and vegetarian. The probabilities of getting a special chest disease are $35 \%, 20 \%$ and 10% respectively. Based on the given information, answer the following questions.	
	(i) A person is chosen from at random from non-smokers and vegetarian group. What is the probability that the selected person be suffering from the disease?	2
	(i) A person is chosen from the group at random and is found to be suffering from the disease. What is the probability that the selected person is a smoker and non-vegetarian?	2

