

Candidates must write the Code on the title page of the answer-book.

A Compilation By : O. P. Gupta (WhatsApp @ +91 9650350 480)

 For more stuffs on Maths, please visit : www.theOPGupta.com
SECTION A

Q01. Evaluate the integral : $\int \frac{\sec x \tan x+\sec ^{2} x}{(\sec x+\tan x)^{n}} d x$. Q02. Find $\int_{-2}^{2} \frac{x^{2}}{1+5^{x}} d x$.
Q03. For what value of x, the vectors $(x-2) \vec{a}+\vec{b}$ and $(2 x+1) \vec{a}-\vec{b}$ are collinear? Assume that the vectors \vec{a} and \vec{b} are non-collinear.
Q04. If a function $f(x)$ is differentiable at $x=c$, then what is the value of $\lim _{x \rightarrow c} f(x)$?

SECTION B

Q05. (a) If $y=2^{\sin (x-\cos x)}$, find $\frac{d y}{d x}$ at $x=\frac{\pi}{2}$.
(b) Differentiate $\tan \left(\mathrm{x}^{\circ}+60^{\circ}\right)$ w.r.t. x .

Q06. Let $A=\left[a_{i j}\right]$ be a square matrix of order 3 and $C_{i j}$ denotes the cofactor of $\left[a_{i j}\right]$ in A. If $|A|=5$, then write the value of $\mathrm{a}_{31} \mathrm{C}_{31}+\mathrm{a}_{32} \mathrm{C}_{32}+\mathrm{a}_{33} \mathrm{C}_{33}$.
Q07. Evaluate $\int_{98}^{100}(x-98)(x-99)(x-100) d x$.
Q08. The income I of Dr. Priya Goel is given by $I(x)=₹\left(x^{3}-3 x^{2}+5 x\right)$. Can an insurance agent ensure her for the growth of her income? Justify.
Q09. If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b} for $\sqrt{3} \vec{a}-\vec{b}$ to be a unit vector?
Q10. Let $f:\{1,2,3\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ given by $f(1)=\mathrm{a}, f(2)=\mathrm{b}$ and, $f(3)=\mathrm{c}$. Show that $\left(f^{-1}\right)^{-1}=f$.
Q11. Find the distance of a point $(2,5,-3)$ from the plane $\overrightarrow{\mathrm{r}} .(6 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=4$.
Q12. Let E_{1} and E_{2} be two independent events such that $P\left(E_{1}\right)=p_{1}$ and $P\left(E_{2}\right)=p_{2}$.
Describe in words of the events whose probabilities are :
(i) $p_{1} p_{2}$
(ii) $\left(1-p_{1}\right) p_{2}$
(iii) $1-\left(1-\mathrm{p}_{1}\right)\left(1-\mathrm{p}_{2}\right) \quad$ (iv) $\mathrm{p}_{1}+\mathrm{p}_{2}-2 \mathrm{p}_{1} \mathrm{p}_{2}$.

SECTION C

Q13. If $y=\cos ^{-1} \sqrt{\frac{\cos 3 x}{\cos ^{3} x}}$ then prove that $\frac{d y}{d x}=\sqrt{\frac{3}{\cos 3 x \cos x}}$.
Q14. Find the particular solution of differential equation $\cos x d y=\sin x(\cos x-2 y) d x$, given that $y=0$ when $x=\pi / 3$.
Q15. If $x=\operatorname{cosec}\left[\tan ^{-1}\left\{\cos \left(\cot ^{-1} \sec \left(\sin ^{-1} a\right)\right)\right\}\right]$ and $y=\sec \left[\cot ^{-1}\left\{\sin \left(\tan ^{-1} \operatorname{cosec}\left(\cos ^{-1} a\right)\right)\right\}\right]$, then find a relation between x and y in terms of a.
Q16. Evaluate $\int \frac{\mathrm{f}^{3}}{\mathrm{f}^{6}+1}$ df. \quad OR Evaluate $\int \frac{1}{\sin 2 \mathrm{x}+\sqrt{3} \cos 2 \mathrm{x}} \mathrm{dx}$.
Q17. Last year, 1 packet of tea and 3 packets of sugar together cost ₹ 96 . This year, the rate of tea increased by 15% and that of sugar by 10%. So, the same amounts of tea and sugar now cost $₹ 108.60$. Find the rates of sugar and tea per packet last year and this year using matrix method.

OR A university gives scholarships for those students who take any of the below subjects as an additional subject in first year, second year, third year of graduation. From the table given below, form a set of simultaneous equations and check the consistency.

Sr. No.	Subject	No. of students in $1^{\text {st }}$ year	No. of students in $2^{\text {nd }}$ year	No. of students in $3^{\text {rd }}$ year
1.	Industrial Waste	1	3	6
2.	Organic Waste	1	1	7
3.	e-Waste	1	1	8
	Amount Received	$₹ 5000$	$₹ 7000$	$₹ 35800$

Q18. The lengths of the sides of an isosceles triangle are $9+x^{2}, 9+x^{2}$ and $18-2 x^{2}$ units. Calculate the area of the triangle in terms of x and find the value of x which makes the area maximum.
OR Find the least value of ' a ' such that the function $f(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{ax}+3$ is strictly increasing on (3, 4).
Q19. Discuss the continuity of $f(\mathrm{x})=\left\{\begin{array}{l}2+\sqrt{1-\mathrm{x}^{2}}, \mathrm{x} \leq 1 \\ 2 e^{(1-\mathrm{x})^{2}}, \mathrm{x}>1\end{array}\right.$ at $\mathrm{x}=1$.
Q20. A and B take turn in throwing two dice. The first to throw 9 is being awarded. Show that if A has the first throw, their chances of winning are in the ratio $9: 8$.
Q21. For any two vectors \vec{a} and \vec{b}, show that: $\left(1+|\vec{a}|^{2}\right)\left(1+|\vec{b}|^{2}\right)=(1-\vec{a} \cdot \vec{b})^{2}+|\vec{a}+\vec{b}+\vec{a} \times \vec{b}|^{2}$.
Q22. Two bikers are running at the speed more than allowed speed on the road along the lines $\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}-\hat{\mathrm{j}})$ and $\overrightarrow{\mathrm{r}}=4 \hat{\mathrm{i}}-\hat{\mathrm{k}}+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})$. Using Shortest Distance formula, check if they meet to an accident or not?
Q23. An urn contains 4 white and 6 red balls. Four balls are drawn at random (without replacement) from the urn. Find the probability distribution of number of white balls.

SECTION D

Q24. Prove that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar. Also, find the equation of the plane containing these two lines.
Q25. Determine graphically the minimum and maximum values of the objective function
$Z=-50 x+20 y$ subject to the constraints : $2 x-y \geq-5,3 x+y \geq 3,2 x-3 y \leq 12, x \geq 0, y \geq 0$.
Q26. Show that $\left|\begin{array}{ccc}-a\left(b^{2}+c^{2}-a^{2}\right) & 2 b^{3} & 2 c^{3} \\ 2 a^{3} & -b\left(c^{2}+a^{2}-b^{2}\right) & 2 c^{3} \\ 2 a^{3} & 2 b^{3} & -c\left(a^{2}+b^{2}-c^{2}\right)\end{array}\right|=a b c\left(a^{2}+b^{2}+c^{2}\right)$.
OR Prove that $(x-2)(x-1)$ is factor of $\left|\begin{array}{ccc}1 & 1 & x \\ \beta+1 & \beta+1 & \beta+x \\ 3 & x+1 & x+2\end{array}\right|$. Hence, write the quotient.
Q27. Consider a relation R in the set A of people in a colony defined as $a R b$ iff a and b are members of joint family. Is R is an equivalence relation? Give reason (s).
OR Let A and B be two sets. Show that $f: A \times B \rightarrow B \times A$ s.t. $f(a, b)=(b, a)$ is a bijection.
Q28. Using integrals, find the area of $\triangle \mathrm{ABC}$ whose vertices have the coordinates as $\mathrm{A}(-1,1), \mathrm{B}(0,5)$ and $C(3,2)$.
OR Evaluate area of the region enclosed between the curves $y^{2}=x+1$ and $y^{2}=-x+1$.
Q29. Find $\int x(\log x)^{2} d x$.

SOLUTIONS \& MARKING SCHEME for PTS - 19 [2016-2017]
 SECTION A

Q01. $\frac{(\sec \mathrm{x}+\tan \mathrm{x})^{1-\mathrm{n}}}{1-\mathrm{n}}+\mathrm{C}$.
Q02. $16 / 3$.
Q03. $1 / 3$.
Q04. $f(c)$

SECTION B

Q05.
(a) $\frac{d y}{d x}=2^{\sin (x-\cos x)} \log 2 x \cos (x-\cos x)(1+\sin x)$
$\left.\therefore \frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\mathrm{at} \mathrm{x}=\frac{\pi}{2}}=2^{\sin \left(\frac{\pi}{2}-\cos \frac{\pi}{2}\right)} \log 2 \times \cos \left(\frac{\pi}{2}-\cos \frac{\pi}{2}\right)\left(1+\sin \frac{\pi}{2}\right)=0$.
(b) Let $\mathrm{y}=\tan \left(\frac{\pi \mathrm{x}}{180}+\frac{\pi}{3}\right) \quad \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\pi}{180} \sec ^{2}\left(\mathrm{x}^{\circ}+60^{\circ}\right)$. Q06. 5 .

Q07. Use property $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ to get $\int_{98}^{100}(x-98)(x-99)(x-100) d x=0$.
Q08. Show that $\frac{d}{d x}[I(x)]>0$ for all x.
Q09. 30°. Q11. $13 / 7$ units.
Q12. (i) $p_{1} p_{2}=P\left(E_{1}\right) P\left(E_{2}\right)=P\left(E_{1} \cap E_{2}\right)$

$$
=P\left(\text { simultaneous occurrence of } E_{1} \text { and } E_{2}\right)
$$

(ii) $\left(1-p_{1}\right) p_{2}=P\left(\bar{E}_{1}\right) P\left(E_{2}\right)=P\left(\bar{E}_{1} \cap E_{2}\right)=P\left(E_{2}-E_{1}\right)=P\left(E_{2}\right.$ but not $\left.E_{1}\right)$
(iii) $1-\left(1-\mathrm{p}_{1}\right)\left(1-\mathrm{p}_{2}\right)=1-\mathrm{P}\left(\overline{\mathrm{E}}_{1}\right) \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right)=1-\mathrm{P}\left(\overline{\mathrm{E}}_{1} \cap \overline{\mathrm{E}}_{2}\right)$

$$
=1-\left\{1-\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)\right\}=\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)
$$

$=P$ (at least one of E_{1} and E_{2} occurs)
(iv) $\mathrm{p}_{1}+\mathrm{p}_{2}-2 \mathrm{p}_{1} \mathrm{p}_{2}=\left(\mathrm{p}_{1}-\mathrm{p}_{1} \mathrm{p}_{2}\right)+\left(\mathrm{p}_{2}-\mathrm{p}_{1} \mathrm{p}_{2}\right)$

$$
\begin{aligned}
& =\left\{\mathrm{P}\left(\mathrm{E}_{1}\right)-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)\right\}+\left\{\mathrm{P}\left(\mathrm{E}_{2}\right)-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)\right\} \\
& =\mathrm{P}\left(\mathrm{E}_{1} \cap \overline{\mathrm{E}}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{2} \cap \overline{\mathrm{E}}_{1}\right) \\
& =\mathrm{P}\left(\text { exactly one of } \mathrm{E}_{1} \text { and } \mathrm{E}_{2} \text { occurs }\right) .
\end{aligned}
$$

SECTION C

Q13. Here $y=\cos ^{-1} \sqrt{\frac{\cos 3 x}{\cos ^{3} x}} \quad \Rightarrow \cos y=\sqrt{\frac{\cos 3 x}{\cos ^{3} x}} \Rightarrow \cos ^{2} y=\frac{\cos 3 x}{\cos ^{3} x}=\frac{4 \cos ^{3} x-3 \cos x}{\cos ^{3} x}$

$$
\begin{aligned}
& \Rightarrow \cos ^{2} y=4-3 \sec ^{2} x \\
& \Rightarrow \frac{d y}{d x}=\frac{6 \sin x}{2 \sin y \cos y \cos ^{3} x}
\end{aligned} \quad \therefore-\sin 2 y \frac{d y}{d x}=0-6 \sec ^{2} x \tan x ~\left(\frac{d y}{d x}=\frac{3 \sin x}{\sin y \sqrt{\frac{\cos 3 x}{\cos ^{3} x}} \cos ^{3} x}\right.
$$

$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{3}}{\sqrt{\frac{\cos ^{3} x \cos 3 x}{\cos ^{2} x}}}$
$\therefore \frac{d y}{d x}=\sqrt{\frac{3}{\cos 3 x \cos x}}$.

Q14. We have $\cos x d y=\sin x(\cos x-2 y) d x \quad \Rightarrow \frac{d y}{d x}+(2 \tan x) y=\sin x$
It is linear diff. eq. of the form $\frac{d y}{d x}+P(x) y=Q(x) . \quad \therefore P(x)=2 \tan x, Q(x)=\sin x$
I.F. $=e^{\int 2 \tan x d x}=\sec ^{2} x$. So solution is given by : $y\left(\sec ^{2} x\right)=\int \sec ^{2} x \sin x d x+C$
i.e., $y\left(\sec ^{2} x\right)=\sec x+C$. And $\because y=0$ when $x=\frac{\pi}{3} \operatorname{so}, 0 \times\left(\sec ^{2} \frac{\pi}{3}\right)=\sec \frac{\pi}{3}+C \quad \Rightarrow C=-2$

Hence required solution is : $y=\cos x-2 \cos ^{2} x$.
Q15. $x=y=\sqrt{3-a^{2}}$.
Q16. Let $\mathrm{I}=\int \frac{\mathrm{f}^{3}}{\mathrm{f}^{6}+1} \mathrm{df}=\int \frac{\mathrm{f}^{2} \times \mathrm{f}}{\left(\mathrm{f}^{2}\right)^{3}+1} \mathrm{df} \quad\left[\right.$ Put $\mathrm{f}^{2}=\mathrm{x} \Rightarrow \mathrm{fdf}=\frac{\mathrm{dx}}{2}$
$\therefore \mathrm{I}=\frac{1}{2} \int \frac{\mathrm{x}}{\mathrm{x}^{3}+1} \mathrm{dx} \quad \Rightarrow \mathrm{I}=\frac{1}{2} \int \frac{\mathrm{x}}{(\mathrm{x}+1)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)} \mathrm{dx}$. Now use Partial Fraction.
OR Let $I=\int \frac{1}{\sin 2 x+\sqrt{3} \cos 2 x} d x=\frac{1}{2} \int \frac{1}{\frac{1}{2} \sin 2 x+\frac{\sqrt{3}}{2} \cos 2 x} d x$
$\Rightarrow \mathrm{I}=\frac{1}{2} \int \frac{1}{\cos \left(2 \mathrm{x}-\frac{\pi}{6}\right)} \mathrm{dx}=\frac{1}{2} \int \sec \left(2 \mathrm{x}-\frac{\pi}{6}\right) \mathrm{dx}=\frac{1}{4} \log \left|\sec \left(2 \mathrm{x}-\frac{\pi}{6}\right)+\tan \left(2 \mathrm{x}-\frac{\pi}{6}\right)\right|+\mathrm{C}$.
Q18. Area : $6 x\left(9-x^{2}\right)$ Sq. units, $x=\sqrt{3} \quad$ OR $\quad a=-3$.
Q19. Continuous at $\mathrm{x}=1$.
Q20. Getting 9 means getting 'sum of the nos. on the dice as 9 '.
Let E : sum of the nos. on the dice as 9 so, $\mathrm{E}=\{(3,6),(4,5),(5,4),(6,3)\}$
That is, $\mathrm{P}(\mathrm{E})=\frac{4}{36}=\frac{1}{9}$ and, $\mathrm{P}(\overline{\mathrm{E}})=1-\frac{1}{9}=\frac{8}{9}$.
As A has the first throw so, he may win in $1^{\text {st }}$ or $3^{\text {rd }}$ or $5^{\text {th }}$ or, \ldots throws.
Therefore, $\mathrm{P}(\mathrm{A}$ wins $)=\mathrm{P}(\mathrm{E})+\mathrm{P}(\overline{\mathrm{E}}) \mathrm{P}(\overline{\mathrm{E}}) \mathrm{P}(\mathrm{E})+\mathrm{P}(\overline{\mathrm{E}}) \mathrm{P}(\overline{\mathrm{E}}) \mathrm{P}(\overline{\mathrm{E}}) \mathrm{P}(\overline{\mathrm{E}}) \mathrm{P}(\mathrm{E})+\ldots$
$\Rightarrow \mathrm{P}(\mathrm{A}$ wins $)=\frac{1}{9}+\left(\frac{8}{9}\right)^{2} \times \frac{1}{9}+\left(\frac{8}{9}\right)^{4} \times \frac{1}{9}+\ldots=\frac{\frac{1}{9}}{1-\frac{64}{81}}=\frac{9}{17}$ and, $\mathrm{P}(\mathrm{B}$ wins $)=1-\mathrm{P}(\mathrm{A}$ wins $)=\frac{8}{17}$.
Hence $P(A$ wins $): P(B$ wins $)=\frac{9}{17}: \frac{8}{17}=9: 8$.
Q21. See Vol. 2 of Mathematicia by O.P. Gupta
Q22. S.D. $=0$, this means they meet to an accident.
SECTION D
Q24. $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=0$.
Q25. See NCERT Example 4
Q26. Let $\Delta=\left|\begin{array}{ccc}-a\left(b^{2}+c^{2}-a^{2}\right) & 2 b^{3} & 2 c^{3} \\ 2 a^{3} & -b\left(c^{2}+a^{2}-b^{2}\right) & 2 c^{3} \\ 2 a^{3} & 2 b^{3} & -c\left(a^{2}+b^{2}-c^{2}\right)\end{array}\right|$

Taking $\mathrm{a}, \mathrm{b}, \mathrm{c}$ common from $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} respectively.
$\Delta=a b c\left|\begin{array}{ccc}-b^{2}-c^{2}+a^{2} & 2 b^{2} & 2 c^{2} \\ 2 a^{2} & -c^{2}-a^{2}+b^{2} & 2 c^{2} \\ 2 a^{2} & 2 b^{2} & -a^{2}-b^{2}+c^{2}\end{array}\right|$ By C C $\rightarrow C_{1}+C_{2}+C_{3}$,
$\Delta=a b c\left|\begin{array}{ccc}a^{2}+b^{2}+c^{2} & 2 b^{2} & 2 c^{2} \\ a^{2}+b^{2}+c^{2} & -c^{2}-a^{2}+b^{2} & 2 c^{2} \\ a^{2}+b^{2}+c^{2} & 2 b^{2} & -a^{2}-b^{2}+c^{2}\end{array}\right|$ Taking $a^{2}+b^{2}+c^{2}$ common from C1,
$\Delta=a b c\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}1 & 2 b^{2} & 2 c^{2} \\ 1 & -c^{2}-a^{2}+b^{2} & 2 c^{2} \\ 1 & 2 b^{2} & -a^{2}-b^{2}+c^{2}\end{array}\right|$. Now complete.
OR \quad Qotient $=\beta$.
Q27. Yes, R is an equivalence relation.
OR We've $\mathrm{f}: \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{B} \times \mathrm{A}$ such that $\mathrm{f}(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{a})$
One-one : Let $(\mathrm{a}, \mathrm{b}) \&(\mathrm{c}, \mathrm{d}) \in \mathrm{A} \times \mathrm{B}$ such that $\mathrm{a} \neq \mathrm{c}, \mathrm{b} \neq \mathrm{d} \forall \mathrm{a}, \mathrm{c} \in \mathrm{A}$ and $\mathrm{b}, \mathrm{d} \in \mathrm{B}$.
Then $\mathrm{f}(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{a}) \& \mathrm{f}(\mathrm{c}, \mathrm{d})=(\mathrm{d}, \mathrm{c}) \Rightarrow(\mathrm{b}, \mathrm{a}) \neq(\mathrm{d}, \mathrm{c})[\because \mathrm{b} \neq \mathrm{d}, \mathrm{a} \neq \mathrm{c}$
That means, $\mathrm{f}(\mathrm{a}, \mathrm{b}) \neq \mathrm{f}(\mathrm{c}, \mathrm{d}) \quad \therefore \mathrm{f}$ is one-one...(i)
Onto : For all $a \in A, b \in B$, we have $(b, a) \in B \times A$ which also implies $(a, b) \in A \times B$
$\therefore \mathrm{f}$ is onto
By (i) and (ii), we can conclude that f is bijective function.
Q28. $15 / 2$ sq. units. OR $8 / 3$ Sq. units.
Q29. $\frac{\mathrm{x}^{2}}{4}\left[2(\log \mathrm{x})^{2}-2 \log \mathrm{x}+1\right]+\mathrm{C}$.

* Dear Student/Teacher,

We would urge you for a little favour. Please notify us about any error(s) you notice in this (or other Math) work of ours. It would be beneficial for all the future learners of Math like us.
Any constructive criticism will be well acknowledged. Please find below our contact info. when you decide to offer us your valuable suggestions. We're looking forward for a response.
Also we would wish if you inform your friends/ students about our efforts for Math so that they may also benefit.

Let's all learn Math with smile :-)

Follow US On

For any clarification(s), please contact :
Math Enthusiast O. P. Gupta [Math (Hons.), E \& C Engg., Indira Award Winner]
WhatsApp @ +919650350480

* Official Web-pages : theOPGupta.com \& iMathematicia.com

