PLAY WITH MATH
BHAGALPUR

Class 12 - Mathematics
 TEST NO. - 01

Maximum Marks: 81
Time Allowed: 3 hours

General Instructions:

All questions are compulsory.
Section A contains 20 questions each of 1 mark. Section B contains 6 questions each of 2 marks. Section C contains 6 questions each of 4 marks. Section D contains 4 questions each of 6 marks.

Section A

1. Write fog , $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=|x|$ and $g(x)=|5 x-2|$.
2. Let R is the equivalence relation in the set $A=\{0,1,2,3,4,5\}$ given by $R=\{(a, b)$: 2 divides ($\mathrm{a}-\mathrm{b}$) \}. Write the equivalence class [0].
3. If f is an invertible function, defined as $\mathrm{f}(\mathrm{x})=\frac{3 x-4}{5}$, then write $\mathrm{f}^{-1}(\mathrm{x})$.
4. Find the value of $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$.
5. If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{l}10 \\ 5\end{array}\right]$, then write the value of x.
6. If A is a non-singular matrix of order 3 and $|\operatorname{adj} A|=|A|$ then what is the value of k ?
7. Find $\frac{d y}{d x}, y=\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)$
8. Differentiate $\sin ^{2} \mathrm{X}$ w.r.t $\mathrm{e}^{\cos \mathrm{x}}$
9. Find the value of the constant k so that the function f defined below is
continuous at $x=0$, where $f(x)=\left\{\begin{array}{c}\frac{1-\cos 4 x}{8 x^{2}}, x \neq 0 \\ k, x=0\end{array}\right.$
10. $\int \frac{\sec ^{2} x}{\cos e c^{2} x} d x$
11. Evaluate $\int_{0}^{3} \frac{d x}{9+x^{2}}$.
12. $\int \cos ^{3} x . e^{\log \sin x} d x$
13. Write the sum of the order and degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{3}+x^{4}=0
$$

14. Find $|\vec{x}|$. if for a unit Vector $\hat{a}(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=15$.
15. If $\vec{a}=7 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ then find the projection of \vec{a} on \vec{b}.
16. Find the vector equation of the plane with intercepts $3,-4$ and 2 on X, Y and Z axes, respectively.
17. Find the angle between the line $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$.
18. Determine the maximum value of $Z=4 x+3 y$ if the feasible region for an LPP is shown in Figure.

19. Evaluate $P(A \cap B)$ if $2 \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\frac{5}{13}$ and $P(A \mid B)=\frac{2}{5}$
20. Given two independent events A and B such that $P(A)=0.3, P(B)=0.6$. Find: P(neither A nor B)

Section B

21. Check the injectivity and surjectivity of the following function:
$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
22. Without expanding, prove that $\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{ccc}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$
23. Verify Rolle's theorem for $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}-8, x \in[-4,2]$.
24. Integrate the function $\sqrt{x^{2}+4 x+1}$
25. Find probability of throwing at most 2 sixes in 6 throws of a single die.
26. Solve the equation: $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$

Section C

27. Find $\frac{d y}{d x}$, If $\mathrm{y}=(\cos \mathrm{x})^{\mathrm{x}}+(\sin \mathrm{x})^{1 / \mathrm{x}}$.

OR
Find $\frac{d y}{d x}$, if $\mathrm{y}=\sin ^{-1}\left[\frac{6 x-4 \sqrt{1-4 x^{2}}}{5}\right]$.
28. $\int_{\pi / 6}^{\pi / 3} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$

OR

Evaluate $\int\left(\frac{1+\sin x}{1+\cos x}\right) e^{x} d x$.
29. Find the particular solution of the differential equation satisfying the given condition.
$x^{2} d y+\left(x y+y^{2}\right) d x=0$, when $y(1)=1$
OR
Solve $\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0 ;$
$y=\pi / 4$, when $\mathrm{x}=1$
30. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being \perp to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$
31. Maximise and Minimise $Z=3 x-4 y$. subject to
$x-2 y \leqslant 0$
$-3 x+y \leqslant 0$
$x-y \leqslant 6$
$x, y \geqslant 0$
32. In a school, it is known that 30% students have 100% attendance and 70% students are irregular. Previous years results report that 70\% of all students who have 100% attendance attain A grade and 10\% irregular students attain A grade in their annual examination. At the end of the year, one student is chosen at random from the school and he was found to have an A grade. What is the probability that the student has 100% attendance? Is regularity required only in school? Justify your answer.

Section D

33. Using elementary transformation, find the inverse of the matrices
$\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
Express the matrix $B=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
34. Find the area of the region in the first quadrant enclosed by the x-axis, the line y $=x$, and the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=32$.
35. Find the coordinate where the line thorough ($3,-4,-5$) and $(2,-3,1)$ crosses the plane $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=7$.
36. If the sum of lengths of the hypotenuse and a side of a right angled triangle is given, show that the area of the triangle is maximum, when the angle between them is $\frac{\pi}{3}$.

A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m , then find the dimensions of the rectangle that will produce the largest area of the window.

