

RISE 'n' SHINE CONVENT SCHOOL-DHAMDHA 1st PERIODIC EXAMINATION(2019-2020)

		Class – XII Subject - Mathematics			
Date:-	11/09/2019	Roll No:	Time:-3 hrs	Max. Marks: 80	
1.	questions of one questions of 4 ma	er consists of 36 questions di mark each, Section - B com	ivided into three Sections A ,B,C a prises of 6 questions of 2 marks e omprises of 4 questions of 6 marks inces are not permitted.	ach, Section – C comprises of 6	
			SECTION- A		
	Choose correct	answer in the following			
Q.1	Let R be a relation in the set N given by $R = \{(a, b): a = b - 2, b > 6\}$ then				
	(A) $(8,7) \in R$	(B) $(8,6) \in R$	(D) $(3,8) \in R$	(D) $(2,4) \in R$	
Q.2	Let $R = \{(a, a^3): a \text{ is prime number less then } 4\}$ be a relation. Then range of R is				
	(A) {8}	(B) {8,27}	(C) {27}	(D) None of these	
Q.3	The Number of binary operations on the set $\{a, b\}$				
	(A) 10	(B) 20	(C) 16	(D)8	
Q.4	Consider the set A having 3 elements and set B having 4 elements then the number of injective function from set A to Set B .				
	(A) 12	(B) 144	(C) 7	(D) 24	
Q.5	Let $f: R \to R$ be a function define by $f(x) = 2x + 3$ then $f^{-1}(x)$ is equal to				
	(A) $2x - 3$	$(B)\frac{x-3}{2}$	$(C)\frac{x-2}{3}$	$(D) \frac{1}{2x+3}$	

Q.6	If $\tan^{-1} x = \frac{\pi}{10}$ for	or some $x \in R$ then the	value of $\cot^{-1} x$ is
	10	0	0

(A)
$$\frac{\pi}{5}$$

(B)
$$\frac{2\pi}{5}$$

(C)
$$\frac{3\pi}{5}$$

(D)
$$\frac{4\pi}{5}$$

Q.7 The domain of $\sin^{-1} 2x$ is

$$(C)\left[-\frac{1}{2},\frac{1}{2}\right]$$

(D)
$$[-2,2]$$

Q.8 If A, B are symmetric matrices of same order, then (AB-BA) is a

(A) Skew symmetric matrix

(B) Identity matrix

(C) Zero matrix

(D)Symmetric matrix

Q.9 If
$$A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$$
 and $A = A^T$ then

(A)
$$x = 0$$
, $y = 5$

(B)
$$x = y$$

(C)
$$x + y = 5$$

(D) None of these

Q.10 If A be a square matrix of order 3×3 , then find the value of |3A| if |A| = 2

(B) 81

(C) 36

(D) 54

Give answers in very short:

Q.11 Give an example of a relation which is symmetric but neither reflexive nor transitive.

Q.12 If $f: R \to R$ be given by $f(x) = (3 - x^3)^{1/3}$ then evaluate fof (x)

Q.13 Evaluate
$$tan^{-1}(-\sqrt{3}) + sec^{-1}(-2)$$

Q.14
$$\frac{d}{dx} e^{\sec x}$$

Q.15 Find the value of K so that the function f(x) is continuous at $x = \frac{\pi}{2}$

$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{,if } x \neq \frac{\pi}{2} \\ 3 & \text{,if } x = \frac{\pi}{2} \end{cases}$$

Q.16 Using differentials find the approximate value of $((255))^{1/4}$

Q.17 If the radius of a sphere is measured as 7 m with error of 0.02 m ,then find the approximate error in calculating its volume.

Q.18 Check whether the function $f: R \to R$ defined by $f(x) = x^2$ is one- one ,onto.

Q.19 If
$$x = \sin \theta$$
 and $y = \cos \theta$ then prove that $\frac{dy}{dx} = \frac{-x}{y}$

Q.20 Find the principal value of $\sin^{-1} \left(\sin \frac{3\pi}{5} \right)$

SECTION-B

- Check whether the relation R in set of real number R defined by 0.21 $R = \{ (a, b) : a \le b^3 \}$, is reflexive symmetric and transitive
- Evaluate $\tan^{-1} \left[2 \cos \left\{ 2 \sin^{-1} \frac{1}{2} \right\} \right]$ Q.22
- Show that $\cos x^2$ is continuous for all real value of x0.23

Q.24 If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, $-1 < x < 1$ prove that $\frac{dy}{dx} = \frac{-1}{(1+x)^2}$

Verify the mean value theorem If $f(x) = x^2 - 4x - 3$ in the interval [a,b] 0.25 where a = 1 and b = 4

OR

Verify the Roll's value theorem for the function $f(x) = x^2 + 2x - 8$, $x \in [-4,2]$

- If for any 3×3 square matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, then write the value of |(adjA)|
- Q.27 Solve $sin^{-1}\left(\frac{5}{x}\right) + sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2}$
- Q.28 If the function $f(x) = \begin{cases} 3ax + b & \text{if } x > 1 \\ 11 & \text{if } x = 1 \text{ is continuous at } x = 1 \text{ find value of a and b} \\ 5ax 2b & \text{if } x < 1 \end{cases}$
- Q.29 Solve the linear equations using matrix method 2x+3y+3z=5, x-2y+z=-4 and 3x-y-2z=3

If matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ Verify that $A^3 - 6A^2 + 9A - 4I = 0$ and hence find A^{-1}

- If $y = \sqrt{2^x + \sqrt{2^x + \sqrt{2^x + \cdots + \cdots + \infty}}}$ prove that $(2y 1)\frac{dy}{dx} = 2^x \log_e 2$
- Differentiate $\sin^{-1}\left\{\frac{2^{x+1}}{1+4^x}\right\}$ Q.31
- Q.32 Find the equation of normal to the curve $y = x^3 + 2x + 6$ which are parallel to the line X + 14y + 4 = 0

SECTION-D

Q.33 Using the properties of the determinants prove that

$$\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = 3(a+b+c).(ab+bc+ca)$$

- Q.34 A window is in the form of the rectangle above which there is a semi circle. If perimeter of window is p cm Show that the window will allow maximum possible light only when the radius of semicircle is $\frac{p}{\pi+4}$ cm.
- Q. 35 Using elementary transformations, find the inverse of Matrix $A = \begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}$
- Q.36 Let $A = N \times N$ and * be a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)Show that the *is commutative and associative .Find the identity element for*on A if any.

OR

Let $f:[\mathbf{0},\infty)\to\mathbf{R}$ be a function defined by $f(x)=5x^2+6x-9$. Prove that f is not invertible. Modify, only the codomain of f to make f invertible and find its inv
