SECTION A

Q01. Find the value of $\sin \left(-\frac{11 \pi}{3}\right)$.

$$
\text { Q02. Write the value of } \lim _{x \rightarrow 3} \frac{e^{x}-e^{3}}{x-3} \text {. }
$$

Q03. Write the real and imaginary part of the zero complex number.
Q04. Write the converse of the following statements :
(i) If a number n is even, then n^{2} is even.
(ii) If x is a prime number, then x is odd.

SECTION B

Q05. If $\mathrm{P}(\mathrm{A})=3 / 5$ and, $\mathrm{P}(\mathrm{B})=1 / 5$, find $\mathrm{P}(\mathrm{A}$ or B$)$, if A and B are mutually exclusive events.
Q06. If $z=2+\sqrt{3} i$, find the value of $z \cdot \bar{z}$.
Q07. A committee of 5 is to be formed out of 6 males and 8 females. In how many ways this can be done when included females are in majority?
Q08. Write the derivative of $x^{5}\left(3-6 x^{-9}\right)$ with respect to x.
Q09. If $\tan x+\cot x=2$, prove that $\tan ^{n} x+\cot ^{n} x=2, n \in N$.
Q10. Find the distance between the lines $15 x+8 y=34$ and $15 x+8 y+31=0$.
Q11. Write the contrapositive of the following statements :
(i) If you are born in India, then you are a citizen of India.
(ii) If a triangle is equilateral, it is isosceles.

Q12. Evaluate : $\lim _{x \rightarrow \pi / 2} \frac{1+\cos 2 x}{(\pi-2 x)^{2}}$.

SECTION C

Q13. Find the term independent of x in the binomial expansion of (a) $\left(\frac{3}{2} \mathrm{x}^{2}-\frac{1}{3 \mathrm{x}}\right)^{9}$ (b) $\left(\sqrt{\frac{\mathrm{x}}{3}}+\frac{\sqrt{3}}{2 \mathrm{x}^{2}}\right)^{10}$.
Q14. Find the equation of the circle passing through the points $(2,3)$ and $(-1,1)$ and whose centre is on the line $x-3 y=11$.
OR Find the equation of ellipse, with major axis along the x -axis and passing through the points $\mathrm{P}(4,3)$ and $\mathrm{Q}(-1,4)$
Q15. Let $A A=\{x: x \in N, x \leq 20\}$. Define a relation R from A to A by $R=\{(a, b): a-2 b=0 ; a, b \in N\}$. Depict the relation R using roster form. Write its domain and range also.
Q16. Find the coordinates of a point on y-axis which are at a distance of $5 \sqrt{2}$ from the point $(3,-2,5)$.
Q17. Determine the coordinates of the foot of perpendicular drawn from the point $(-1,3)$ from the line $3 x-4 y-16=0$.
OR Find the equation of the circle which is circumscribed about the Δ whose vertices are $(-2,3)$, $(5,2)$ and $(6,-1)$.
Q18. If the sum of n terms of an $A P$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is 164 , find the value of m.
Q19. A girl has 3 library book passes and 8 books of his interest are there in the library. Of these 8 books she does not want to borrow Mathematicia Vol. 2 unless Mathematicia Vol. 1 is also borrowed. In how many ways can she choose the three books to be borrowed?
Q20. Find the domain of $f(x)=\frac{1}{\sqrt{[x]^{2}-4[x]+3}}$.

OR Find the domain and range of the real valued function $f(x)=\frac{1}{1-x^{2}}$.
Q21. If $x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)=z \cos \left(\theta+\frac{4 \pi}{3}\right)$, then find the value of $x y+y z+z x$.
Q22. Three squares of a chess board are selected at random, find the probability of selecting two squares of one colour and the other of a different colour.
Q23. Using principle of induction, show that $\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)} \quad \forall n \in N$.

SECTION D

Q24. Calculate mean and, variance for the following distribution :

Classes	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	3	7	12	15	8	3	2

OR The mean and S.D. of a group of 100 observations were found to be 20 and 3 respectively. On rechecking, it was observed that three entries were incorrect, which were recorded as 21,21 and, 18. Find the mean and S.D. if the incorrect entries were omitted.

Q25. In a survey of 60 people, it was found that 25 people read newspaper $\mathrm{H}, 26$ read newspaper T and 26 read newspaper I, 9 read both Hand I, 11 read H and T, 8 read both T and I and 3 read all the three newspapers. Find the number of people who read (a) at least one of the newspapers (b) exactly one newspaper. Write the names of any 3 newspapers circulating in your area, also state the importance of reading newspapers.
OR In a town of 10000 families, it was found that 40% families buy fruit $\mathrm{A}, 20 \%$ families buy fruit $\mathrm{B}, 10 \%$ families buy fruit $\mathrm{C}, 5 \%$ families buy A and $\mathrm{B}, 3 \%$ buy B and C and, 4% buy A and C . If 2% families buy all the three kind of fruits, find the number of families which buy (a) fruit A only (b) none of A, B and C. Write the names of any 3 fruits of your choice, also state the importance the of eating fruits.
Q26. (a) Find the general solution of the equation $\tan 5 x=\frac{1}{\tan 2 x}$.
(b) Evaluate $\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\ldots+\cos \frac{7 \pi}{7}$.

OR Prove that $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}=\frac{1}{16}$. Hence evaluate $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$.
Q27. Let $\mathrm{S}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots$ to n terms. Differentiate S w.r.t. n .
Q28. Solve the system of inequations graphically: $x+y \geq 1,3 x+4 y<12, x-2 y \leq 2, x \geq 0, y \geq 0$
Q29. Evaluate : $\lim _{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\sin x+\cos x)^{5}}{1-\sin 2 x}$.

ADVANCE MATHS CLASSES by O.P. Gupta are held at

 PATHFINDERS CLASSES$1^{\text {st }}$ Floor, Near ESIC Dispensary, Opp. H.P. Petrol Pump, Thana Road, Najafgarh, Delhi.

HINTS \& ANSWERS for PTS XI - 07 [2016-2017]

SECTION A

Q01. $\sin \left(-\frac{11 \pi}{3}\right)=\sin \left(-4 \pi+\frac{\pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$.
Q02. $\lim _{x \rightarrow 3} \frac{e^{x}-e^{3}}{x-3}=\lim _{x-3 \rightarrow 0} \frac{e^{3}\left(e^{x-3}-1\right)}{x-3}=e^{3} \times 1=e^{3}$.
Q03. Let $\mathrm{z}=0+0 \mathrm{i} \quad \therefore \operatorname{Re}(\mathrm{z})=0$ and $\operatorname{Im}(\mathrm{z})=0$.

SECTION B

Q05. 4/5
Q06. 7
Q07. 1316
Q08. $15 x^{4}+24 x^{-5}$
Q09. As $\tan x+\cot x=2 \Rightarrow \tan x+\frac{1}{\tan x}=2 \Rightarrow(\tan x-1)^{2}=0 \quad \Rightarrow \tan x=1=\tan (\pi / 4)$
$\therefore \mathrm{x}=\mathrm{n} \pi+\pi / 4, \mathrm{n} \in \mathrm{Z}$.
Now LHS: $\tan ^{n} x+\cot ^{n} x=\left(\tan \frac{\pi}{4}\right)^{n}+\left(\cot \frac{\pi}{4}\right)^{n}=1^{n}+1^{n}=2=$ RHS .
Q10. 24/17 units
Q12. $1 / 2$.

SECTION C

Q13. (a) $7^{\text {th }}$ term i.e., ${ }^{9} \mathrm{C}_{6} \times \frac{1}{216} \quad$ (b) $3^{\text {rd }}$ term i.e., ${ }^{10} \mathrm{C}_{2} \times \frac{1}{108}$.
Q16. $(0,2,0),(0,-6,0)$
Q18. 27
Q21. Let $\mathrm{x} \cos \theta=\frac{1}{\mathrm{k}} \Rightarrow \mathrm{k} \cos \theta=\frac{1}{\mathrm{x}} \ldots$ (i)
So, $\mathrm{k} \cos \left(\theta+\frac{2 \pi}{3}\right)=\frac{1}{\mathrm{y}} \ldots$ (ii) and $\mathrm{k} \cos \left(\theta+\frac{4 \pi}{3}\right)=\frac{1}{\mathrm{z}} \ldots$ (iii)
Adding these equations, we get : $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}=\mathrm{k} \cos \theta+\mathrm{k} \cos \left(\theta+\frac{2 \pi}{3}\right)+\mathrm{k} \cos \left(\theta+\frac{4 \pi}{3}\right)$
$\Rightarrow \frac{y z+z x+z y}{x y z}=k\left(\cos \theta+2 \cos \left(\frac{2 \theta+2 \pi}{2}\right) \cos \left(\frac{\pi}{3}\right)\right)=k(\cos \theta-\cos \theta) \quad \therefore x y+y z+z x=0$.
Q22. $\frac{2\left({ }^{32} \mathrm{C}_{2} \times{ }^{32} \mathrm{C}_{1}\right)}{{ }^{64} \mathrm{C}_{3}}$

SECTION D

Q25. (a) 52 (b) 30
Q26. (a) $\tan 5 x=\cot 2 x=\tan \left(\frac{\pi}{2}-2 x\right) \Rightarrow 5 x=n \pi+\left(\frac{\pi}{2}-2 x\right) \quad \therefore x=\frac{n \pi}{7}+\frac{\pi}{14}, n \in Z$.
(b) $\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{5 \pi}{7}+\cos \frac{6 \pi}{7}+\cos \frac{7 \pi}{7}$
$\Rightarrow \quad=\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \left(\pi-\frac{3 \pi}{7}\right)+\cos \left(\pi-\frac{2 \pi}{7}\right)+\cos \left(\pi-\frac{\pi}{7}\right)+\cos \pi$
$\Rightarrow \quad=\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}-\cos \frac{3 \pi}{7}-\cos \frac{2 \pi}{7}-\cos \frac{\pi}{7}+\cos \pi=-1$.
Q27. $\frac{1}{(\mathrm{n}+1)^{2}}$
Q29. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\sin x+\cos x)^{5}}{1-\sin 2 x}=\lim _{\sin x+\cos x \rightarrow \sqrt{2}} \frac{(\sin x+\cos x)^{5}-(\sqrt{2})^{5}}{(\sin x+\cos x)^{2}-(\sqrt{2})^{2}}$
$\Rightarrow \quad=\lim _{\sin x+\cos x \rightarrow \sqrt{2}} \frac{(\sin x+\cos x)^{5}-(\sqrt{2})^{5}}{(\sin x+\cos x)-(\sqrt{2})} \times \frac{(\sin x+\cos x)-(\sqrt{2})}{(\sin x+\cos x)^{2}-(\sqrt{2})^{2}}=5(\sqrt{2})^{4} \times \frac{1}{2(\sqrt{2})}=5 \sqrt{2}$.

