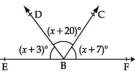
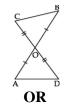
Visit us at: www.uecj4u.hpage.co.in


UNIVERSAL EDUCATION CENTRE JAYANT SHARMA (94145-37474, 98181-63814) SUMMATIVE ASSESSMENT - 1 (2015 - 2016)

MATHEMATICS

Class – IX

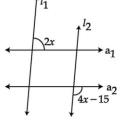

Time allowed: 3 hours		Maximum Marks: 90
Gen	eral Instructions:	
a) All questions are compulsory.		
b) The question paper consists of 31 questions of		
c) Section A contains 4 questions of 1 mark each	which are multiple	choice questions, Section B contains 6
questions of 2 marks each, Section C cont	tains 10 questions o	f 3 marks each and Section D contains 11
questions of 4 marks each.		
d) Use of calculator is not permitted.		
	Section A	
Q.1 $\frac{p}{q}$ form of the number 0.3 is :		Y
(A) $\frac{3}{10}$ (B) $\frac{3}{100}$	(C) $\frac{1}{2}$	(D) $\frac{1}{2}$
Q.2 Which of the following is a cubic polynom	3	2
		_
(A) $x^3 + 3x^2 - 4x + 3$ (B) $x^2 + 4x - 7$	(C) $3x^2 + 4$	(D) $3(x^2 + x + 1)$
Q.3 If a polynomial $f(x)$ is divided by $x - x$	a, then remainder	r is
(A) $f(0)$ (B) $f(a)$	(C) $f(-a)$	(D) $f(a) - f(0)$
Q.4 If \triangle ABC is congruent to \triangle DEF by SSS con	gruence rule, then	:
-	-	(D) $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$
$(A) \angle C < \angle F \qquad (B) \angle B < \angle E$	Section B	$(D) \sum A = \sum D, \sum D = \sum L, \sum C = \sum L$
$0 \in \mathcal{F}$ is define some index where $v^3 = 2v^2 + v + 1$		·
Q.5 Find the remainder when $x^3 - 2x^2 + x + $	· 1 is divided by ((x - 1).
Q.6 In the figure below if $AB = AC$, find the value of $AB = AC$.	alue of x .	
	A	
	A	
	\neq^{x}	
	125°/	
★	<u> </u>	
Q.7 The area of an equilateral triangle is 16	$\frac{2}{3}$ m ² Find Its perir	neter (in metres)
	•	
Q.8 The base of a right triangle is 15 cm and i	its hypotenuse is z	5 cm. men mu its area.
Q.9 Simplify $\left(\frac{64}{125}\right)^{-2/3}$		
Q.10 Simplify : $(\sqrt{3} + 2)(\sqrt{3} - 2)$		
· · · · · · · · · · · · · · · · · · ·	Section C	

Q.11 In the given figure, find the value of x.

Q.12 In the figure, OA = OB and OD = OC. Show that

(i) $\Delta AOD \cong \Delta BOC$ (ii) AD || BC

An exterior angle of a triangle is 120° and one of the interior opposite angles is 40°. Find the other two angles of a triangle.


Q.13 If (x - 1) is a factor of the polynomial $p(x) = 3x^4 - 4x^3 - ax + 2$ then find the value of 'a'? Q.14 A point lies on *x*-axis at a distance of 9 units from *y*-axis. What are its coordinates ?

What will be the coordinates of a point if it lies on y axis at a distance of - 9 units from x-axis ?

- Q.15 Find the value of $\left(\frac{64}{125}\right)^{-2/3} + \frac{1}{\left(\frac{256}{625}\right)^{\frac{1}{4}}} + \frac{\sqrt{25}}{\sqrt[3]{64}}$ OR Represent $\sqrt{3}$ on number line. Q.16 Prove that $\frac{1}{2+\sqrt{3}} + \frac{2}{\sqrt{5}-\sqrt{3}} + \frac{1}{2-\sqrt{5}} = 0$ Q.17 Factorise : $x^2 + \frac{x}{4} - \frac{1}{8}$. OR What are the possible expressions for the dimensions of a cuboid whose volume is given below ? Volume = $12ky^2 + 8ky - 20k$. Q.18 If x = 2y + 6 then find the value of $x^3 - 8y^3 - 36xy - 216$. Q.19 In $\triangle ABC$, $\angle B = 45^\circ$, $\angle C = 55^\circ$ and bisector of $\angle A$ meets BC at a point D.
 - Find \angle ADB and \angle ADC.

OR

In the figure below, $l_1 \parallel l_2$ and $a_1 \parallel a_2$. Find the value of *x*.

Q.20 In the figure below, $l_1 \parallel l_2$ and $m_1 \parallel m_2$. Prove that $\angle 1 + \angle 2 = 180^\circ$.

Section D

Q.21 In the given figure, AB = AC, D is the point in the interior of \triangle ABC such that \angle DBC = \angle DCB. Prove that AD bisects \angle BAC of \triangle ABC.

Q.22 In the given figure, AB = BC and AD = EC. Prove that . $\triangle ABE \cong \triangle CBD$

Q.23 In the given figure, if ABICD, $\angle APQ = 50^{\circ}$ and $\angle PRD = 127^{\circ}$, find x and y.

Q.24 The perimeter of a triangular field is 300 cm and its sides are in the ratio 5 : 12 : 13.

Find the length of the perpendicular from the opposite vertex to the side whose length is 130 cm. Q.25 Find the values of a and b if $\frac{7+3\sqrt{5}}{3+\sqrt{5}} - \frac{7-3\sqrt{5}}{3-\sqrt{5}} = a + \sqrt{5}b$ OR

Evaluate after rationalizing the denominator of $\frac{25}{\sqrt{40}-\sqrt{80}}$. It is being given that

 $\sqrt{5} = 2.236 \text{ and } \sqrt{10} = 3.162$ Q.26 Simplify $\frac{1}{2+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}}$ Q.27 Prove that : $(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3 = 3 (a + b) (b + c) (c + a) (a - b) (b - c) (c - a)$

Q.28 If remainder is same when polynomial $p(x) = x^3 + 8x^2 + 17x + ax$ is divided by (x + 2)

and (x + 1), find the value of *a*.

Q.29 Find α and β , if (x + 1) and (x + 2) are factors of $x^3 + 3x^2 - 2\alpha x + \beta$.

OR

Factorize : $x^3 - 3x^2 - 9x - 5$.

Q.30 Plot the points A (4, 0) and B (0, 4). Join AB to the origin O. Find the area of $\triangle AOB$. Q.31 In the given figure, the side QR of $\triangle PQR$ is produced to a point S. If the bisectors of $\angle PQR$

and $\angle PRS$ meet at point T, then prove that $\angle QTR = \frac{1}{2} \angle QPR$.

ALL THE BEST

50°