UNIVERSAL EDUCATION CENTRE JAYANT SHARMA ($94145-37474,98181-63814)$
 SUMMATIVE ASSESSMENT - I (2015-2016)
 MATHEMATICS
 Class - IX

Time allowed: 3 hours

General Instructions:

a) All questions are compulsory.
b) The question paper consists of 31 questions divided into four sections - A, B, C and D.
c) Section A contains 4 questions of 1 mark each which are multiple choice questions, Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each.
d) Use of calculator is not permitted.

Section A

Q. $1 \frac{p}{q}$ form of the number $0 . \overline{3}$ is:
(A) $\frac{3}{10}$
(B) $\frac{3}{100}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$
Q. 2 Which of the following is a cubic polynomial ?
(A) $x^{3}+3 x^{2}-4 x+3$
(B) $x^{2}+4 x-7$
(C) $3 x^{2}+4$
(D) $3\left(x^{2}+x+1\right)$
Q. 3 If a polynomial $f(x)$ is divided by $x-\mathrm{a}$, then remainder is
(A) $f(0)$
(B) $f(a)$
(C) $f(-a)$
(D) $f(\mathrm{a})-f(0)$
Q. 4 If $\triangle A B C$ is congruent to $\triangle D E F$ by $S S S$ congruence rule, then :
(A) $\angle C<\angle F$
(B) $\angle B<\angle E$
(C) $\angle A<\angle D$
(D) $\angle A=\angle D, \angle B=\angle E, \angle C=\angle F$

Section B
Q. 5 Find the remainder when $x^{3}-2 x^{2}+x+1$ is divided by $(x-1)$.
Q. 6 In the figure below if $A B=A C$, find the value of x.

Q. 7 The area of an equilateral triangle is $16 \sqrt{3} \mathrm{~m}^{2}$. Find Its perimeter (in metres).
Q. 8 The base of a right triangle is 15 cm and its hypotenuse is 25 cm . Then find its area.
Q. 9 Simplify $\left(\frac{64}{125}\right)^{-2 / 3}$
Q. 10 Simplify : $(\sqrt{3}+2)(\sqrt{3}-2)$

Section C

Q. 11 In the given figure, find the value of x.

Q. 12 In the figure, $O A=O B$ and $O D=O C$. Show that
(i) $\triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$ (ii) $\mathrm{AD} \| \mathrm{BC}$

OR
An exterior angle of a triangle is 120° and one of the interior opposite angles is 40°.
Find the other two angles of a triangle.
Q. 13 If $(x-1)$ is a factor of the polynomial $\mathrm{p}(x)=3 x^{4}-4 x^{3}-\mathrm{a} x+2$ then find the value of ' a '?
Q. 14 A point lies on x-axis at a distance of 9 units from y-axis. What are its coordinates ?

What will be the coordinates of a point if it lies on y axis at a distance of -9 units from x-axis ?
Q. 15 Find the value of $\left(\frac{64}{125}\right)^{-2 / 3}+\frac{1}{\left(\frac{256}{\left.\frac{1}{4}\right)^{\frac{1}{4}}}+\frac{\sqrt{25}}{\sqrt[3]{64}} \quad \text { OR Represent } \sqrt{3} \text { on number line. }\right.}$
Q. 16 Prove that $\frac{1}{2+\sqrt{3}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}=0$
Q. 17 Factorise : $x^{2}+\frac{x}{4}-\frac{1}{8}$.

OR

What are the possible expressions for the dimensions of a cuboid whose volume is given below ? Volume $=12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}$.
Q. 18 If $x=2 y+6$ then find the value of $x^{3}-8 y^{3}-36 x y-216$.
Q. 19 In $\triangle \mathrm{ABC}, \angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=55^{\circ}$ and bisector of $\angle \mathrm{A}$ meets BC at a point D .

Find $\angle \mathrm{ADB}$ and $\angle \mathrm{ADC}$.

OR

In the figure below, $l_{1} \| l_{2}$ and $\mathrm{a}_{1} \| \mathrm{a}_{2}$. Find the value of x.

Q. 20 In the figure below, $l_{1} \| l_{2}$ and $m_{1} \| m_{2}$. Prove that $\angle 1+\angle 2=180^{\circ}$.

Section D

Q. 21 In the given figure, $A B=A C, D$ is the point in the interior of $\triangle A B C$ such that $\angle D B C=\angle D C B$.

Prove that $A D$ bisects $\angle B A C$ of $\triangle A B C$.

$Q .22$ In the given figure, $A B=B C$ and $A D=E C$. Prove that.$\triangle A B E \cong \triangle C B D$

Q. 23 In the given figure, if $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find x and y.

Q. 24 The perimeter of a triangular field is 300 cm and its sides are in the ratio $5: 12: 13$.

Find the length of the perpendicular from the opposite vertex to the side whose length is 130 cm .
Q .25 Find the values of a and b if $\frac{7+3 \sqrt{5}}{3+\sqrt{5}}-\frac{7-3 \sqrt{5}}{3-\sqrt{5}}=a+\sqrt{5} b$
OR
Evaluate after rationalizing the denominator of $\frac{25}{\sqrt{40}-\sqrt{80}}$. It is being given that $\sqrt{5}=2.236$ and $\sqrt{10}=3.162$
Q. 26 Simplify $\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}}$.
Q. 27 Prove that : $\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}=3(a+b)(b+c)(c+a)(a-b)(b-c)(c-a)$
Q. 28 If remainder is same when polynomial $\mathrm{p}(x)=x^{3}+8 x^{2}+17 x+a x$ is divided by $(x+2)$ and $(x+1)$, find the value of a.
Q. 29 Find α and β, if $(x+1)$ and $(x+2)$ are factors of $x^{3}+3 x^{2}-2 \alpha x+\beta$.

OR

Factorize: $x^{3}-3 x^{2}-9 x-5$.
Q. 30 Plot the points $A(4,0)$ and $B(0,4)$. Join $A B$ to the origin O. Find the area of $\triangle A O B$. Q. 31 In the given figure, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle Q T R=\frac{1}{2} \angle Q P R$.

ALL THFE BEST

