

DESIGN OF QUESTION PAPER CBSE BOARD: 2015-16

Time allowed: 3 Hours CLASS: XIISUB: MATHEMATICS (041) M. Marks: 100

General Instructions:

DATE:30/01/2016

- i. All questions are compulsory.
- The question paper consists of 26 questions divided into three sections A, B and C.
 Section A comprises of 6 questions of one mark each, Section B comprises of 13
 questions of four marks each and Section C comprises of 7 questions of six marks each.
- iii. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- iv. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- v. Use of calculators is not permitted.

<u>SECTION – A</u>

(one mark each)

- 1. If $\alpha \le 2\sin^{-1}x + \cos^{-1}x \le \beta$ find the value of α and β
- 2. If a matrix has 28 elements, how many possible orders it can have? what is it has 13 elements?
- 3. Write the order of the differential equation of all circles of given radius.
- 4. Find the integrating factor of the differential equation $\frac{dy}{dx}(x \log x) + y = 2 \log x$.
- 5. Find the angle between $\hat{i} \hat{j}$ and $\hat{j} \hat{k}$
- 6. Find the unit vector perpendicular to the vectors $\hat{i} \hat{j}$ and $\hat{i} + \hat{j}$

<u>SECTION – B</u>

(four marks each)

7. Evaluate $\int \frac{2x+3}{\sqrt{3+4x-4x^2}} \, \mathrm{d}x.$

OR

Evaluate $\int e^{x} \left(\frac{1-x}{1+x^{2}}\right)^{2} dx$

8. A committee of 4 students is selected at random from a group consisting 8boys and 4 girls. Given that there is at least one girl on the committee, calculate the probability that there are exactly 2 girls on the committee.

OR

A bag contains (2n + 1) coins. It is known that *n* of these coins have a head on both sides where as the rest of the coins are fair. A coin is picked up at random from the bag and is

tossed. If the probability that the toss results in a head is $\frac{31}{42}$, determine the value of *n*.

- 9. Find all vectors of magnitude $10\sqrt{3}$ that are perpendicular to the plane of $\hat{i} + 2\hat{j} + \hat{k}$ and $-\hat{i} + 3\hat{j} + 4\hat{k}$
- 10. Show that the straight lines whose direction cosines are given by 2l+2m-n=0 and mn+nl+lm=0 are at right angles.
- 11. If $a_1, a_2, a_3, \dots, a_n$ is an arithmetic progression with common difference d, then evaluate the following expression.

$$\tan\left[\tan^{-1}\left(\frac{d}{1+a_{1}a_{2}}\right) + \tan^{-1}\left(\frac{d}{1+a_{2}a_{3}}\right) + \tan^{-1}\left(\frac{d}{1+a_{3}a_{4}}\right) + \dots + \tan^{-1}\left(\frac{d}{1+a_{n-1}a_{n}}\right)\right]$$
OR

Find the real solutions of the equation $\tan^{-1}(\sqrt{x(x+1)}) + \sin^{-1}(\sqrt{x^2 + x + 1}) = \frac{\pi}{2}$ 12. Prove that the function f defined by $f(x) = \begin{cases} \frac{x}{|x| + 2x^2} & x \neq 0 \\ k, & x = 0 \end{cases}$, remains discontinuous at x=0, regardless the choice of k.

x=0,regardless the choice of k.

13. If
$$x^{y} = e^{x-y}$$
, show that $\frac{dy}{dx} = \frac{\log x}{(\log x+1)^{2}}$
14. If $y\sqrt{1-x^{2}} + x\sqrt{1-y^{2}} = 1$, show that $\frac{dy}{dx} = -\sqrt{\frac{1-y^{2}}{1-x^{2}}}$

- 15. Evaluate $\int \sin^{-1} \sqrt{\frac{x}{a+x}} dx$
- 16. Two schools A and B decided to award prizes to their students for three values, team spirit, truthfulness and tolerance at the rate of Rs x, Rs y and Rsz per student respectively. School A, decided to award a total of Rs 1,100 for the three values to 3, 1 and 2 students respectively while school B decided to award Rs 1,400 for the three values to 1, 2 and 3 students respectively. If one prize for all the three values together amount to Rs 600 then (i) Represent the above situation by a matrix equation after forming linear equations.
 - (ii) Is it possible to solve the system of equations so obtained using matrices ?
 - (iii) Which value you prefer to be rewarded most and why?

17. Let
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$$
. Then show that A2-4A+7I=0, Using this result calculate A⁵ also.
OR
If $A = \begin{bmatrix} 0 & -x \\ x & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ and $x^2 = -1$, then show that $(A+B)^2 = A^2 + B^2$
18. Show that if the determinant $\Delta = \begin{vmatrix} 3 & -2 & \sin 3\theta \\ -7 & 8 & \cos 2\theta \\ -11 & 14 & 2 \end{vmatrix} = 0$, then $\sin\theta = 0$ or $\frac{1}{2}$
19. Evaluate $I = \int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} dx$

20. Solve :
$$y + \frac{d}{dx}(xy) = x(\sin x + \log x)$$

Solve: $\frac{dy}{dx} = \cos(x + y) + \sin(x + y)$

- 21. The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α . Prove that the equation of the plane in its new position is $ax + by \pm (a^2 + b^2 \tan \alpha) z = 0$.
- 22. By examining the chest X ray, the probability that TB is detected when a person is actually suffering is 0.99. The probability of an healthy person diagnosed to have TB is 0.001. In a certain city, 1 in 1000 people suffers from TB. A person is selected at random and is diagnosed to have TB. What is the probability that he actually has TB?
- 23. A man rides his motorcycle at the speed of 50 km/hour. He has to spend Rs 2 per km on petrol. If he rides it at a faster speed of 80 km/hour, the petrol cost increases to Rs 3 per km. He has atmost Rs 120 to spend on petrol and one hour's time. He wishes to find the maximum distance that he can travel. Express this problem as a linear programming problem. "Speed thrill but kill" Explain?
- 24. An isosceles triangle of vertical angle 2 θ is inscribed in a circle of radius *a*. Show that the area of triangle is maximum when $\theta = \frac{\pi}{c}$.

OR

Find the points of local maxima, local minima and the points of inflection of the function $f(x) = x^5 - 5x^4 + 5x^3 - 1$. Also find the corresponding local maximum and local minimum values.

- 25. Find the area of the region bounded by the curves $x = at^2$ and y = 2at between the ordinate corresponding to t = 1 and t = 2.
- 26. Let A = {1, 2, 3, ... 9} and R be the relation in A ×A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A ×A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)].