close $\wp_{\text {guess }}$	CBSEGuess.com

CLASS XII

MATHS

TIME 3:00 HRS

MM: 100
Date: 21.02.17
Note: Q. No. 1 to 4 carry 1 marks each, Q. No. 5 to 12 carry 2 marks each, Q. No. 13 to 23 carry 4 marks each, Q. No. 24 to 29 carry 6 marks each.

Section-A

Q1. If a line makes angles α, β and γ with the axes respectively, then find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.
Q2. If $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then find the value of $|A|$.
Q3. If $\sin ^{-1} x-\cos ^{1} x=\frac{\pi}{6}$, then find the value of x.
Q4. Let * be a binary operation on N defined by $a * b=a+b+10$ for all $a, b \in N$. Find the identity element for * in N.

Section-B

Q5. Find X, if f is invertible where $f:[2, \infty) \rightarrow X$ and $f(x)=4 x-x^{2}$.
Q6. If $|\vec{a} \times \vec{b}|=4$ and $|\vec{a} \cdot \vec{b}|=2$, then find the value of $|\vec{a}|^{2}|\vec{b}|^{2}$.
Q7. Find the direction ratios of the line which is perpendicular to the lines with direction ratios as $1,-2,-2$ and $0,2,1$.

Q8. Form the differential equation of the family of curves $y=a \sin (b x+c), a$ and c being parameters.

Q9. The slope of tangent to the curve at any point is twice the ordinate at that point. The curve passes through the point $(4,3)$. Determine the equation of the curve.

Q10. Find the maximum value of $z=10 x+6 y$, subject to the constraints $x \geq 0, y \geq 0, x+y \leq 12,2 x+y \leq 20$.

Q11. Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 2%.
Q12. Let A and B be two events such that $P(\overline{A \cup B})=\frac{1}{6}, P(A \cap B)=\frac{1}{4}$ and $P(\bar{A})=\frac{1}{4}$. Prove that A \& B are independent events.

Section-C

Q13. Find the interval in the function $f(x)=2 x^{2}-\log x, x \neq 0$ is increasing.

CDSE	
CBSESEGuess.com	

Q14. If $x=a \cos \theta+b \sin \theta$ and $y=a \sin \theta-b \cos \theta$, then prove that

$$
y^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0 .
$$

OR

Show that the function $f(x)=|x-2|, x \in R$ is continuous but not differentiable at $x=2$.

Q15. Find the area of the region bounded by the curves $x-y+2=0 \& x=\sqrt{y}$.
Q16. Evaluate $\int \frac{\tan x}{\sqrt{\sin ^{4} x+\cos ^{4} x}} d x$.

OR

Evaluate $\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{\cos ^{2} x+\sin ^{4} x} d x$.
Q17. If the vectors $\vec{a}=\hat{i}-\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{c}=\lambda \hat{i}+\hat{j}+\mu \hat{k}$ are mutually perpendicular, then find the values of λ and μ.

OR

Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\vec{c}=\hat{a}+2 \hat{b}$ and $\vec{d}=5 \hat{a}-4 \hat{b}$ are perpendicular to each other, then find the angle between \hat{a} and \hat{b}.
Q18. Solve the differential equation $x \cos x\left(\frac{d y}{d x}\right)+y(x \sin x+\cos x)=1$.
Q19. If the line $\frac{x+1}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ intersects the curve $x y=c^{2}, z=0$, find the value of c.
Q20. Each of the n urns contains 4 white and 6 black balls. The $(n+1)^{\text {th }}$ urn contains 5 white and 5 black balls. One of the $(n+1)$ urns is chosen at random and two balls are drawn from it without replacement. Both the balls turn out to be black. If the probability that the $(n+1)^{\text {th }}$ urn was chosen to draw the balls is $1 / 16$. Find the value of n.
Q21. A coin is tossed n times. If the probability of getting head atleast once is greater than 0.8 , then find the value of n.

Q22. Two tailors, A and B expense Rs. 15 and Rs. 20 per day respectively. A can stitch 6 shirts and 4 pants while B can stitch 10 shirts and 4 pants per day. How many days shall each work if it is desired to produce (at least) 60 shirts and 32 pants at a minimum expense?

Q23. Show that $\left|\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ b a & c^{2}+a^{2} & b c \\ c a & c b & a^{2}+b^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.

Section-D

chasess	CBSEGuess.com

Q24. Evaluate $\int \frac{x e^{x}}{\sqrt{1+e^{x}}} d x$.
OR
Evaluate $\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x, a>0$.
Q25. If $\sqrt{x^{2}+y^{2}}=a e^{\tan ^{-1} \frac{y}{x}}, a>0$, then find $y^{\prime \prime}(0)$.
Q26. Solve for $x,\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$.

Q27. If $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$, show that $A^{T} A^{-1}=\left[\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$.

OR

Find the matrix A satisfying the matrix equation

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right] A\left[\begin{array}{cc}
-3 & 2 \\
5 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Q28. If the lines $\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2}$ and $\frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5}$ are perpendicular, find the value of k and hence find the equation of plane containing these lines.

Q29. Find the maximum area of the rectangle whose sides pass through the angular points of a given rectangle of sides a and b.

ANSWERS:
A1. $\quad-1$
A2. 10
A3. $\frac{\sqrt{3}}{2}$
A4. -10
A5. $(-\infty, 4]$
A6. $\quad 20$
A7. $2,-1,2$
A8. $\frac{d^{2} y}{d x^{2}}+b^{2} y=0$.
A9. $y=3 e^{2 x-8}$
A10. 104
A11. $0.06 x^{3} \mathrm{~m}^{3}$

CDSE	
CBuess	CBSEGuess.com

A13. $\left(-\frac{1}{2}, 0\right) \cup\left(\frac{1}{2}, \infty\right)$
A15. $\frac{10}{3}$
A16. $\quad \frac{1}{2} \log \left|\tan ^{2} x+\sqrt{1+\tan ^{4} x}\right|+C \quad$ OR $\quad \frac{\pi}{4}-\frac{1}{2 \sqrt{3}} \log |2-\sqrt{3}|$
A17. $\lambda=-3, \mu=2$
OR
A18. $x y=\sin x+C \cos x$
A19. $\pm 2 \sqrt{2}$
A20. 10
A21. 3
A22. A : 5 days, B: 3 days
A24. $(2 x-4) \sqrt{1+e^{x}}-2 \log \left|\frac{\sqrt{1+e^{x}}-1}{\sqrt{1+e^{x}}+1}\right|+C$ OR

A25. $-\frac{2}{a} e^{-\pi / 2}$
A26. - 1
A27. OR $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
A28. $2,-22 x+19 y+5 z=31$
A29. $\frac{1}{2}(a+b)^{2}$

MATHS by Er. AJEET Sir
B-36, VAISHALI NAGAR B-BLOCK, JAIPUR
翎: 98292-34167(Whatsapp only)

