	CLASS: XII Session: 2021-22 Mathematics Term-2 Time Allowed: 2 hours Maximum Marks: 40 General Instructions: 1. This question paper contains three sections - A, B and C. Each part is compulsory. 2. Section - A has 6 short answer type (SA1) questions of 2 marks each. 3. Section B has 4 short answer type (SA2) questions of 3 marks each. 4. Section - C has 4 long answer type questions (LA) of 4 marks each. 5. There is an internal choice in some of the questions. 6. Q14 is a case-based problem having 2 sub parts of 2 marks each.	
	SECTION - A	
1.	Find $\int \frac{x \mathrm{e}^{x}}{(1+x)^{2}} \mathrm{~d} x$ Find $\int_{0}^{2}(x-[x]) \cdot \mathrm{d} x$	2
2.	Write the sum of the order and the degree of the following differential equation: $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{3 y+\frac{\mathrm{d} y}{\mathrm{~d} x}}{\sqrt{\frac{d^{2} y}{d x^{2}}}}$	2
3.	If $\vec{p}=(2 \hat{\imath}-3 \hat{\jmath}-6 \hat{k})$, Find the scalar and vector projections of \vec{p} on the line joining the points $(3.4,-2)$ and $(5,6,-3)$.	2
4.	Find the angle between the line $\frac{x+3}{2}=\frac{y-1}{1}=\frac{z+4}{-2}$ and the plane $x+y+4=0$	2
5.	A couple has 3 children. Find the probability that they have at least one child of each gender ?	2
6.	An anti-aircraft gun fired three shots to a fighter plane. The probability of hitting the target by the first shots is 0.4 ; second shots is 0.5 and the third shot is 0.7 . Find the probability that the target is destroyed.	2
	SECTION B	
7.	Find: $\int \mathrm{e}^{x}\left(\frac{1+\sin x}{1+\cos x}\right) \mathrm{d} x$	3
8.	Find the particular solution of the following differential equation: $(2 x+y+1) \mathrm{d} x+(4 x+2 y-1) \mathrm{d} y=0, y(0)=1$ OR Find the general solution of the differential equation: $(x+\tan y) \mathrm{d} y=(\sin 2 y) \mathrm{d} x$	3

9.	If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors, find the angle inclined by $(\vec{a}+\vec{b}+\vec{c})$ with \vec{a}, \vec{b} and \vec{c}.	3
10.	Find the shortest distance between the following lines $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$ and $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$. OR Find the vector and cartesian equation of the plane(s) passes through the intersection of the planes, $x+3 y-z+1=0$ and $3 x-y+5 z+3=0$ and are at a distance $\frac{2}{3}$ units from origin .	3
	SECTION C	
11.	Evaluate: $\int_{0}^{1}\left\{\frac{\log (1+x)}{1+x^{2}}\right\} d x$	4
12.	Using integration, Find the area of the region into which the circle $x^{2}+y^{2}=4$ is divided by the line $x+\sqrt{3} y=2$. OR Using integration, determine the area common to the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2 x$	4
13.	Find the foot of the perpendicular drawn from the point $(5,7,3)$ to the line: $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$ Find the length of the perpendicular and its equation.	4
14.	CASE-BASED/DATA-BASED From a survey conducted in a cancer hospital it is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of alcoholics, 50% of gutka chewers and 10% of the non-specific, then given that no patient has more than one bad habits, estimate the probability that Based on the given information, answer the following questions.	
	(i) A patient is chosen at random from smokers or alcoholics group. What is the probability that the selected person be affected with cancer ?	2
	(ii) A cancer patient chosen from any one of the above types, selected at random, has no specific carcinogenic habits ?	2

