SQP-3-Term-2-Session-2021-22

	SQP-3-Term-2-Session-2021-22	
	06 March 2022 11:30 PM Sample Question Paper	
	CLASS: XII	
	Session: 2021-22 Mathematics	
	Term - 2	
	Time Allowed: 2 hoursMaximum Marks: 40	
	General Instructions:	
	1. This question paper contains three sections - A, B and C. Each part is compulsory.	
	2. Section - A has 6 short answer type (SA1) questions of 2 marks each.	
	3. Section B has 4 short answer type (SA2) questions of 3 marks each.	
	4. Section - C has 4 long answer type questions (LA) of 4 marks each.	
	5. There is an internal choice in some of the questions.	
	6. Q14 is a case-based problem having 2 sub parts of 2 marks each.	
	<u>SECTION - A</u>	
1.	Find $\int \frac{x e^x}{(1+x)^2} dx$	2
	OR	
	Find $\int_{0}^{2} (x - [x]) \cdot dx$	
2.	Write the sum of the order and the degree of the following differential equation: $\frac{d^2y}{dx^2} = \frac{3y + \frac{dy}{dx}}{\sqrt{\frac{d^2y}{dx^2}}}$	2
3.	If $\vec{p} = (2\hat{i} - 3\hat{j} - 6\hat{k})$, Find the scalar and vector projections of \vec{p} on the line joining the points $(3.4, -2)$ and $(5,6, -3)$.	2
4.	Find the angle between the line $\frac{x+3}{2} = \frac{y-1}{1} = \frac{z+4}{-2}$ and the plane $x + y + 4 = 0$	2
5.	A couple has 3 children. Find the probability that they have at least one child of each gender ?	2
6.	An anti-aircraft gun fired three shots to a fighter plane. The probability of hitting the target by the first shots is 0.4; second shots is 0.5 and the third shot is 0.7. Find the probability that the target is destroyed.	2
	SECTION B	
7.	Find: $\int e^x \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$	3
8.	Find the particular solution of the following differential equation: (2x + y + 1) dx + (4x + 2y - 1) dy = 0, y(0) = 1	3
	OR	
	Find the general solution of the differential equation: $(x + \tan y) dy = (\sin 2y) dx$	

.

9.	$ \mathbf{f}_{1} ^{2}$ \vec{h}_{2} and there exists a distribution of the state \mathbf{f} is data and \mathbf{f} is distributed by $(\vec{z} + \vec{h}_{1} + \vec{z})$ with	3
5.	If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular unit vectors, find the angle inclined by $(\vec{a} + \vec{b} + \vec{c})$ with \vec{a} , \vec{b} and \vec{c} .	
10.	Find the shortest distance between the following lines $\frac{x-3}{2} = \frac{y+15}{-7} = \frac{z-9}{5}$ and $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z-9}{-3}$. OR	3
	Find the vector and cartesian equation of the plane(s) passes through the intersection of the planes, $x + 3y - z + 1 = 0$ and $3x - y + 5z + 3 = 0$ and are at a distance $\frac{2}{3}$ units from origin.	
	SECTION C	
11.	Evaluate: $\int_0^1 \left\{ \frac{\log(1+x)}{1+x^2} \right\} dx$	4
12.	Using integration, Find the area of the region into which the circle $x^2 + y^2 = 4$ is divided by the line $x + \sqrt{3}y = 2$.	4
	OR	
	Using integration, determine the area common to the parabola $y^2 = x$ and the circle $x^2 + y^2 = 2x$	
13.	Find the foot of the perpendicular drawn from the point (5,7,3) to the line: $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$	4
	Find the length of the perpendicular and its equation.	
14.	CASE-BASED/DATA-BASED	
	Based on the given information, answer the following questions.	
	(i) A patient is chosen at random from smokers or alcoholics group. What is the probability that the selected person be affected with cancer ?	2
	(ii) A cancer patient chosen from any one of the above types, selected at random, has no specific carcinogenic habits ?	2

֎֍֎֎֎֍֎֎