Jhe Excellence Key... CODE:0402-AG-2-FC-23-24

(M.Sc, B.Ed., M.Phill, P.hd) पजियन क्रमांक

REG.NO:-TMC -D/79/89/36

General Instructions:

RGET MATHEMA

1. This Question paper contains - five sections A, B, C, D and E. Each section is

compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-

parts of the values of 1, 1 and 2 marks each respectively

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2

Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has

been provided in the 2marks questions of Section E

8.Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

EXAMINATION 2023 - 24

Time :	3 Hours Maximum Marks	: 80
CLASS – IX MATHEMA		TICS
Sr.	SECTION - A	Marks
No.		
	This section comprises of very short answer type-questions (VSA) of 1 marks each	
Q.1	The area of an equilateral triangle is $24\sqrt{3}$ sq. m, then its perimeter is :	1
	(A 96 m (B) $12\sqrt{6}$ m (C) $4\sqrt{6}$ m (D) $2\sqrt{6}$ m ANS B	
Q.2	If the sides of triangle are produced, then the sum of the exterior angles i.e.	1

TMC/D/79/89

P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony Ph.: 4063585(O), 7000636110(O) Mobile : <u>9425109601(P)</u>

1

Visit us at www.agyatgupta.com

visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com			
	(a) 30° (b) 45° (c) 90° (d) 60°		
Q.9	Yamini and Fatima, two students of Class IX of a school, together contributed Rs 100 towards the Prime Minister's Relief Fund to help the earthquake victims. Then a linear equation which satisfies this data is (You may take their contributions as Rs x and Rs y respectively) (a) $x+y=100$ (b) $y=x+100$ (c) $y-x=100$ (d) none of these	1	
Q.10	The positive solutions of the equation $ax+by+c=0$ always lie in the (a) 1st quadrant (b) 2nd quadrant (c) 3rd quadrant (d) 4th quadrant	1	
Q.11	If the diameter of the base of a cylindrical pillar is 4 m and its height is 21 m, then	1	
	the cost of construction of the pillar at Rs. 1.50 per cubic metre is :	1	
0.12	(a) Rs. 396 (b) Rs. 400 (c) Rs. 410 (d) Rs. 420		
Q.12	From the figure $P^{70^{\circ}}$ find the value of \angle SQP and \angle QSP of parallelogram PQRS.	1	
	(A) 60^0 , 50^0 (B) 60^0 , 45^0 (C) 70^0 , 35^0 (D) 35^0 , 70^0		
Q.13	The point on the graph of the equation $3x-2y+12=0$ whose y-coordinates is $3/4$ times the x-coordinate is (a) (8, 6) (b) (8, -6) (c) (-8, -6) (d) (-6, -8)	1	
Q.14	The edges of a triangular board are 6cm,8cm and 10cm long. The cost of painting it at the rate of 9 paise per cm ² (a) rs 2 (b) rs 2.16 (C) rs 2.48 (d) rs 3	1	
Q.15	In countries like USA and Canada, temperature is measured in Fahrenheit, whereas in countries like India, it is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius: $F = \left(\frac{9}{5}\right)C + 32$. If the temperature is 30°C, what is the temperature in Fahrenheit? (a) 54°F (b) 76°F (c) 86°F (d) None of these	1	
Q.16	If $x = k+1$, $y = 2k-1$ is a solution of the equation $3x-2y+7=0$, then $k=$	1	
	(a) 10 (b) 6 (c) 4 (d) 12	1	
Q.17	If $x + y = 3$ and $xy = -18$, find the value of $x^3 + y^3$ (A) 189 (B) 198 (C) -189 (D) none of these	1	
Q.18	If the mean of the observation $x + 3$ $x + 5$ $x + 7$ and $x + 10$ is 0 the mean	1	
		1	
TMC	/D/19/89 3 P.T.O.		

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com of the last three observation is (b) $10\frac{2}{3}$ (c) $11\frac{1}{3}$ (a) $10\frac{1}{3}$ (d) $11\frac{2}{3}$ **ASSERTION-REASON BASED QUESTIONS** In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is true. Q.19 Assertion (A): If $p(x) = x^3 - 6x^2 + 11x - 6$ Thus, 1,2 and 3 are called the zeros of 1 polynomial p(x). Reason (R): A real number α is a zero of the polynomial p(x) if $p(\alpha) = 0$. Statement-1(Assertion): The angles subtended by a chord at any two points of a Q.20 1 circle are equal. Statement-2 (Reason): angles in the same segment of a circle are equal. **SECTION - B** This section comprises of very short answer type-questions (VSA) of 2 marks each If $f(x) = 2x^3 - 13x^2 + 17x + 12$, find (i) f(2) (ii) f(-3)(ii) f(0). Q.21 2 The distance (in km) of 40 engineers from their residence to their place of work Q.22 2 were found as follows: 5 , 3 , 10 , 20 , 25 , 11 , 13 , 7 , 12 , 31 , 19 ,10 , 12 , 12. Construct a grouped frequency distribution table with class size 5 for the data given above taking the first interval as 0-5 (5 not included). What main features do you observe from this tabular representation? Q.23 Find the area of a triangle whose sides are 13 cm, 14 cm and 15 cm. 2 Q.24 Savitri had to make a model of a cylindrical kaleidoscope for her science project. 2 She wanted to use chart paper to make the curved surface of the kaleidoscope, (see ${\mathcal O}$). What would be the area of chart paper required by her, if she Fig wanted to make a kaleidoscope of length 25 cm with a 3.5 cm radius? You may take $\pi = \frac{22}{7}$. OR

TMC/D/79/89

4 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	A corn cob (see Fig.), shaped somewhat like a cone, has the radius of its broadest end as 9 cm and length (height) as 12 cm. If each 1 cm ² of the surface of the cob carries an average of four grains, find how many grains you would find on the entire cob.(Use $\pi = 3.14$).	
Q.25	Which is greater is each of the following : $\sqrt[3]{16}$ and $\sqrt[5]{8}$.	2
		-
	OR	
	Prove that $3 - \sqrt{5}$ is an irrational number.	
	SECTION - C	
	(This section comprises of short answer type questions (SA) of 3 marks each)	
Q.26	Show that if the diagonals of quadrilateral are equal and bisect each other at right	3
	angles. then it is a square.	5
	OR	
	ABCD is a quadrilateral in which AB = AD and BC = CD. Prove that	
	(i)AC bisects $\angle A$ and $\angle C$ (ii) BE = DE.	
0.27		
Q.27	In fig P , $PR > PQ$ and PS bisects $\angle QPR$. Prove that $\angle PSR >$	3
TMC	/D/79/89 5 P.T.O.	

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	∠PSQ.		
Q.28	The length, breadth and height of a room are 5 m, 4 m and 3 m respectively. Find		
	the cost of white washing the walls of the room and the ceiling at the rate of Rs		
	7.50 per m^2 .		
Q.29	The following data on the number of girl	ls (to the nearest ten) per thousand boys in	3
	different sections of Indian society is given below.		
	Section	Number of girls per thousand boys	
	Scheduled Caste (SC)	940	
	Scheduled Tribe (ST)	970	
	Non SC/ST	920	
	Backward districts	950	
	Non-backward districts	920	
	Rural	930	
	Urban	910	
	(i)Represent the information above by a	bar graph.	
	(ii) In the classroom discuss what conclu	sions can be arrived at from the graph.	
			5
	In fig ǒ , the side	s AB and AC of \triangle ABC are produced to	
	point E and D respectively. If bisect	fors BO and CO of \angle C BE and \angle BCD	
	respectively meet at point O, then	prove that $\angle BOC = 90^\circ - \frac{1}{2} \angle BAC$.	
Q.31			3
		OR	
	Three equal cubes are placed adjacently	in a row. Find the ratio of the total surface	
	area of the new cuboids to that of the sur	n of the surface areas of three cubes .	
	SECTION -	D true questions (I A) of 5 and 1 and 1	
0.32	ARCD is a transpirum in which	ABICD and $\Delta D = BC$ Show that	5
~=			3

TMC/D/79/89

6 P.T.O. **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

	8, 8, 1	
	$A = \angle B \text{ (ii) } \angle C = \angle D \text{ (iii) } \triangle ABC \cong \triangle BAD \text{ (iv) diagonal AC = diagonal BD.}$	
Q.33	Simplify $\left(\frac{81}{16}\right)^{-3/4} \times \left[\left(\frac{25}{9}\right)^{-3/2} \div \left(\frac{5}{2}\right)^{-3}\right]$.	5
Q.34	In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that $DM = CM$. Point D is joined to D A	5
Q.35	A park, in the shape of a quadrilateral ABCD, has $\angle C = 90^{\circ}$, AB = 9 m, BC = 12	5
	m, CD = 5 m and AD = 8 m. How much area does it occupy? OR A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side 'a'. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm, what will be the area of the signal board?	
	SECTION - E	
	(This section comprises of 3 case study / passage – based questions of 4 marks each with two sub parts (i),(ii),(iii) of marks 1, 1, 2 respectively. The third case study question has two sub – parts of 2 marks each.)	
Q.36	CASE STUDY - 1	
	If O is the center of the circle, find the value of x in each of the following figure	

TMC/D/79/89

7

P.T.O.

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

i.	A B C	1
ii.	A A B 55° C	1
iii .	R R R R R R R R	2
Q.37	CASE STUDY – 2 Give a ans in one line .	
i.	State the conditions for quadrilateral ABCD to be a parallelogram.	1
ii.	State the condition for a parallelogram to be a rectangle.	1
iii.	State the type of quadrilateral ABCD if AB = BC = CD = DA, $\angle A = \angle C$ and	2
	$\angle B = \angle D$. OR What is a trapezium.	
Q.38	To beautify parks in a city, city municipal corporation decided to make triangular flower beds in parks as shown in fig the dimensions of a triangular flower bed are $75m \times 80m \times 85m$ based on this information answer the following questions:	

TMC/D/79/89

8P.T.O.Target Mathematics by- Dr.Agyat Guptavisit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colonyPh. : 4063585(O), 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com

	A WO ON	
i.	If each triangular flower bed is to be fenced with two parallel wires one below the	1
	(a) $120m$ (b) $240m$ (c) $260m$ (d) $480m$	
ii.	The area of a flower bed is	2
	(a) $300\sqrt{42} \text{ m}^2$ (b) $300\sqrt{21} \text{ m}^2$ (c) $600\sqrt{21} \text{ m}^2$ (d) $400\sqrt{21} \text{ m}^2$	
iii.	If each triangular bed is an equilateral triangle of side 60m, then its area is	1
	(a) $900\sqrt{3}\mathrm{m^2}$ (b) $600\sqrt{3}\mathrm{m^2}$ (c) $1200\sqrt{3}\mathrm{m^2}$ (d) $400\sqrt{3}\mathrm{m^2}$	
	OR The sum of an increase to exist here is and sum laider (1,2) is since here	
	I he area of an isosceles triangle with base 'a' and equal sides 'b' is given by $a = \frac{b}{b}$	
	$ \begin{array}{cccc} (a)\frac{a}{4}\sqrt{4b^2 - a^2} & (b)\frac{b}{4}\sqrt{4a^2 - b^2} & (c)\frac{a}{2}\sqrt{2b^2 - a^2} & (d)\frac{b}{2}\sqrt{4a^2 - b^2} \\ \end{array} $	

	"मेहनत करो, सफलता खुद आपके पास आएगी।"	