PRE-BOARD EXAMINATION 2020-21 AG-TMC-TS-XII-2802-12-N MATHEMATICS

Time allowed : 3 hours

Maximum marks : 80

General Instructions :

- 1. This question paper contains two parts A and B. Each part is compulsory. Part-A carries 24 marks and Part-B carries 56 marks.
- 2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
- 3. Both Part-A and Part-B have internal choices.

Part - A :

- 1. It consists of two Sections-I and II.
- 2. Section-I comprises of 16 very short answer type questions.
- 3. Section-II contains 2 case study-based questions.

Part - B :

- 1. It consists of three Sections-III, IV and V.
- 2. Section-III comprises of 10 questions of 2 marks each.
- 3. Section-IV comprises of 7 questions of 3 marks each.
- 4. Section-V comprises of 3 questions of 5 marks each.
- 5. Internal choice is provided in 3 questions of Section-III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

PART - A

Section - I

1. If the function $f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases}$ is continuous at x = 2, then find the value of k.

OR

If $y = \log_7 (\log x)$, then find $\frac{dy}{dx}$.

- **2.** If $tan^{-1}(cot\theta) = 2\theta$, then find the value of θ .
- 3. Find the value of $(\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) \cdot (\hat{k} + \hat{i})$.

OR

- If lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are mutually perpendicular, then find the value of *k*.
- 4. If a line makes angles 90°, 135°, 45° with the X, Y, Z axes respectively, then find its direction cosines.

Target Mathematics by- Dr.Agyat Gupta

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : <u>9425109601(</u>P)

5. Evaluate : $\int \frac{dx}{5 - 8x - x^2}$

 $\pi/4$

OR

Evaluate :
$$\int_{-\pi/4} |\sin x| dx$$

6. For matrix $A = \begin{bmatrix} 3 & 4 & -2 \\ -4 & 5 & -3 \\ 2 & 7 & 9 \end{bmatrix}$, find $\frac{1}{2}(A - A')$. (where A' is the transpose of the matrix A)

7. Find the direction cosines of the side AC of a $\triangle ABC$ whose vertices are given by A(3, 5, 4), B(-2, -2, -2) and C(3, -5, 4).

OR

Show that three points *A*(−2, 3, 5), *B*(1, 2, 3) and *C*(7, 0, −1) are collinear.

- 8. If $A = \{1, 5, 6\}$, $B = \{7, 9\}$ and $R = \{(a, b) \in A \times B : |a b| \text{ is even}\}$. Then write the relation *R*.
- 9. Find the degree and order of the differential equation : $5x\left(\frac{dy}{dx}\right)^2 \frac{d^2y}{dx^2} 6y = \log x$. OR

Solve the differential equation $(1 + x^2)\frac{dy}{dx} = e^y$.

- **10.** If *A* and *B* are the points (– 3, 4, 8) and (5, 6, 4) respectively, then find the ratio in which *yz*-plane divides the line joining the points *A* and *B*.
- **11.** If *A* is a square matrix such that $A^2 = A$, then find $(I + A)^3 7A$.
- 12. A line makes an angle of $\pi/4$ with each of X-axis and Y-axis. What angle does it make with Z-axis?
- **13.** If $P = \begin{bmatrix} 10 & -2 \\ -5 & 1 \end{bmatrix}$, then check whether P^{-1} exists or not.
- 14. Write the projection of $\vec{b} + \vec{c}$ on \vec{a} , where $\vec{a} = 2\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$.
- **15.** Let n(A) = 4 and n(B) = 6, then find the number of one-one functions from *A* to *B*.
- 16. A line makes 45° with OX, and equal angles with OY and OZ. Find the sum of these three angles.

Section - II

Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each sub-part carries 1 mark.

17. A card is lost from a pack of 52 cards. From the remaining cards of pack two cards are drawn and are found to be both spades.

Farget Mathematics by- <u>Dr.</u>Agyat Gupta

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : <u>9425109601(</u>P) Based on the above information, answer the following questions :

(i) The probability of drawing two spades, given that a card of spade is missing, is

(a)
$$\frac{21}{425}$$
 (b) $\frac{22}{425}$ (c) $\frac{23}{425}$ (d) $\frac{1}{425}$

(ii) The probability of drawing two spades, given that a card of club is missing, is

(a)
$$\frac{26}{425}$$
 (b) $\frac{22}{425}$ (c) $\frac{19}{425}$ (d) $\frac{23}{425}$

(iii) Let *A* be the event of drawing two spades from remaining 51 cards and E_1 , E_2 , E_3 and E_4 be the events that lost card is of spade, club, diamond and heart respectively, then the value of $\sum_{i=1}^{4} P(A / E_i)$ is

- (a) 0.17 (b) 0.24 (c) 0.25 (d) 0.18
- (iv) All of a sudden, missing card is found and, then two cards are drawn simultaneously without replacement. Probability that both drawn cards are aces is

(a)
$$\frac{1}{52}$$
 (b) $\frac{1}{221}$ (c) $\frac{1}{121}$ (d) $\frac{2}{221}$

(v) If two card are drawn from a well shuffled pack of 52 cards, with replacement, then probability of getting not a king in 1st and 2nd draw is

(a) $\frac{144}{169}$ (b) $\frac{12}{169}$ (c) $\frac{64}{169}$ (d) none of these

18. Arun got a rectangular parallelopiped shaped box and spherical ball inside it as his birthday present. Sides of the box are x, 2x, and x/3, while radius of the ball is r cm. Based on the above information, answer the following questions :

- (i) If *S* represents the sum of volume of parallelopiped and sphere, then *S* can be written as
 - (a) $\frac{4x^3}{3} + \frac{2}{2}\pi r^2$ (b) $\frac{2x^2}{3} + \frac{4}{3}\pi r^2$ (c) $\frac{2x^3}{3} + \frac{4}{3}\pi r^3$ (d) $\frac{2}{3}x + \frac{4}{3}\pi r$
- (ii) If sum of the surface areas of box and ball are given to be constant, then *x* is equal to
 - (a) $\sqrt{\frac{k^2 4\pi r^2}{6}}$ (b) $\sqrt{\frac{k^2 4\pi r}{6}}$ (c) $\sqrt{\frac{k^2 4\pi}{6}}$

(d) none of these

(iii) The radius of the ball, when *S* is minimum, is

(a)
$$\sqrt{\frac{k^2}{54+\pi}}$$
 (b) $\sqrt{\frac{k^2}{54+4\pi}}$ (c) $\sqrt{\frac{k^2}{64+3\pi}}$ (d) $\sqrt{\frac{k^2}{4\pi+3}}$

(iv) Relation between length of the box and radius of the ball can be represented as

(a)
$$x = 2r$$
 (b) $x = \frac{r}{2}$ (c) $x = \frac{r}{2}$ (d) $x = 3r$

(v) Minimum volume of the ball and box together is

(a)
$$\frac{k^2}{2(3\pi+54)^{2/3}}$$
 (b) $\frac{k}{(3\pi+54)^{3/2}}$ (c) $\frac{k^3}{3(4\pi+54)^{1/2}}$ (d) none of these
PART - B

Section - III

19. Find the intervals on which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ is increasing.

20. A vector \vec{r} is inclined at equal angles to OX, OY and OZ. If the magnitude of \vec{r} is 6 units, then find \vec{r} .

OR

Find the value of λ such that the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other.

21. If A and B are two independent events, such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{1}{5}$, then find the value of $P(A|A \cup B)$.

22. If
$$x \in [0, 1]$$
, then find the value of $\frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right)$.
23. Evaluate $\int \frac{\sqrt{16+(\log x)^2}}{x} dx$ OR

Evaluate :
$$\int_{0}^{\pi/2} \frac{\sin x}{1 + \cos^2 x} dx$$

24. Solve the differential equation :
$$\frac{dy}{dx} = \frac{3e^{2x} + 3e^{4x}}{e^x + e^{-x}}$$

- 25. The probability that it will rain on any particular day is 50%. Find the probability that it rains only on first 4 days of the week.
- **26.** Find the derivative of $\left[\sqrt{1-x^2}\sin^{-1}x-x\right]$ w.r.t. *x*.
- **27.** Find the area bounded by the curve $x^2 + y^2 = 1$ in the first quadrant.

28. Compute the adjoint of the matrix $\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}$.

OR

If the matrix $\begin{bmatrix} 1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1 \end{bmatrix}$ is not invertible, then find the value of *a*. Section - IV

29. Let $A = R - \{2\}$ and $B = R - \{1\}$. If $f: A \to B$ is a mapping defined by $f(x) = \frac{x-1}{x-2}$, then show that f is bijective. 30. Consider $f(x) = \begin{cases} \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & \text{for } x \neq 0\\ k, & \text{for } x = 0 \end{cases}$. If f(x) is continuous at x = 0, then find the value of k.

31. Find the values of *x* for which $f(x) = (x (x - 2))^2$ is an increasing function. Also, find the points on the curve, where the tangent is parallel to *x*-axis.

OR

MATHEN

An open box with a square base is to be made out of a given quantity of cardboard of area c^2 square units. Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$ cubic units.

The Excellence Key..

(M.Sc, B.Ed., M.Phill, P.hd)

32. Evaluate : $\int_{-\infty}^{\infty} \{\tan^{-1} x + \tan^{-1}(1-x)\} dx$

Mathematics

33. If
$$y = x \log\left(\frac{x}{a+bx}\right)$$
, then prove that $x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2$.
34. Solve the differential equation $\frac{dy}{dx} = \frac{e^x (\sin^2 x + \sin 2x)}{y(2\log y + 1)}$.

Find the solution of the equation $\frac{dy}{dx} = \frac{y^2 - y - 2}{x^2 + 2x - 3}$. Find the area bounded by $y = x^2$, the x – axis and the lines **35.** x = -1 and x = 1.

Section - V

OR

36. Find the image of the point having position vector $\hat{i} + 3\hat{j} + 4\hat{k}$ in the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 3 = 0$. OR

Find the points on the line $\frac{x+2}{1} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of 2 units from the point (-2, -1, 3).

37. Solve the following linear programming problem (LPP) graphically.

Maximize Z = 4x + 6ySubject to constraints: $x + 2y \le 80, \ 3x + y \le 75; \ x, y \ge 0$

OR

Solve the following linear programming problem (LPP) graphically. Minimize Z = 30x + 20ySubject to constraints : $x + y \le 8$, $x + 4y \ge 12$, $5x + 8y \ge 20$; $x, y \ge 0$

38. If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, then calculate *AC*, *BC* and (*A* + *B*)*C*. Also verify that (A + B)C = AC + BC.

OR

Find the matrix A satisfying the matrix equation $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} A \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$

Target Mathematics by- Dr.Agyat Gupta Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony visit us: agyatgupta.com;Ph. :7000636110(O) Mobile : <u>9425109601(P)</u> Target Mathematics by Dr. Agyat Gupta

