Roll No.

Candidates must write the Code on the title page of the answer-book.

Compiled By : OP Gupta | WhatsApp @ +91-9650 350480

 Based on Sample Paper issued by CBSE for Board Exams 2015 For more stuffs on Maths, please visit at : www.theO PGupta.com/Time Allowed : 180 Minutes
Max. Marks : 100

SECTION - A

Q01. The position vectors of points A and B are \vec{a} and \vec{b} respectively. P divides $A B$ in the ratio $3: 1$ and Q is mid-point of AP. Find the position vector of Q .
Q02. Find the area of the parallelogram, whose diagonals are $\vec{d}_{1}=5 \hat{i}$ and $\overrightarrow{\mathrm{d}}_{2}=2 \hat{\mathrm{j}}$.
Q03. If $\mathrm{P}(2,3,4)$ is the foot of perpendicular from origin to a plane, then write the vector equation of this plane.
Q04. If $\Delta=\left|\begin{array}{ccc}1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2\end{array}\right|$, write the cofactor of a_{32} (the element of third row and 2nd column).
Q05. If m and n are the order and degree, respectively of the differential equation
$y\left(\frac{d y}{d x}\right)^{3}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-x y=\sin x$, then write the value of $m+n$.
Q06. Write the differential equation representing the curve $y^{2}=4 a x$, where a is an arbitrary constant.

SECTION - B

Q07. To raise money for an orphanage, students of three schools A, B and C organized an exhibition in their locality, where they sold paper bags, scrap-books and pastel sheets made by them using recycled paper, at the rate of Rs. 20, Rs. 15 and Rs. 5 per unit respectively. School A sold 25 paperbags 12 scrap-books and 34 pastel sheets. School B sold 22 paper-bags, 15 scrapbooks and 28 pastel-sheets while school C sold 26 paper-bags, 18 scrap-books and 36 pastel sheets. Using matrices, find the total amount raised by each school.
By such exhibition, which values are inculcated in the students?
Q08. Let $A=\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)$, then show that $A^{2}-4 A+7 I=O$. Using this result calculate A^{3} also.
OR If $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 5 & 3 \\ 0 & 2 & 1\end{array}\right)$, find A^{-1} using elementary row operations.
Q09. If x, y, z are in GP, then using properties of determinants, show that
$\left|\begin{array}{ccc}p x+y & x & y \\ p y+z & y & z \\ 0 & p x+y & p y+z\end{array}\right|=0$, where $x \neq y \neq z$ and p is any real number.
Q10. Evaluate : $\int_{-1}^{1}|x \cos \pi x| d x$.
Q11. Evaluate : $\int \frac{1+\sin 2 x}{1+\cos 2 x} e^{2 x} d x$. OR Evaluate : $\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x$.

Q12. Consider the experiment of tossing a coin. If the coin shows tail, toss it again but if it shows head, then throw a die. Find the conditional probability of the event that 'the die shows a number greater than 3' given that 'there is at least one head'.
OR How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
Q13. For three vectors \vec{a}, \vec{b} and \vec{c} if $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \times \vec{c}=\vec{b}$, then prove that \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, $|\vec{b}|=|\vec{a}|$ and $|\vec{a}|=1$.
Q14. Find the equation of the line through the point $(1,-1,1)$ and perpendicular to the lines joining the points $(4,3,2),(1,-1,0)$ and $(1,2,-1),(2,1,1)$.
OR Find the position vector of the foot of perpendicular drawn from the point $\mathrm{P}(1,8,4)$ to the line joining $\mathrm{A}(0,-1,3)$ and $\mathrm{B}(5,4,4)$. Also find the length of this perpendicular.
Q15. Solve for x : $\sin ^{-1} 6 x+\sin ^{-1} 6 \sqrt{3} x=-\frac{\pi}{2}$. OR Prove that: $2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}$.
Q16. If $x=\sin t, y=\sin k t$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+k^{2} y=0$.
Q17. If $y^{x}+x^{y}+x^{x}=a^{b}$, find $\frac{d y}{d x}$.
Q18. It is given that for the function $f(x)=x^{3}+b x^{2}+a x+5$ on [1,3], Rolle's theorem holds with $\mathrm{c}=2+\frac{1}{\sqrt{3}}$. Find the values of a and b. Q19. Evaluate : $\int \frac{1+3 \mathrm{x}}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$.

SECTION - C

Q20. Let $A=\{1,2,3, \ldots, 9\}$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ in $\mathrm{A} \times \mathrm{A}$.
Prove that R is an equivalence relation. Also obtain the equivalence class $[(2,5)]$.
OR Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ be a function defined as $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{2}+12 \mathrm{x}+15$.
Show that $f: N \rightarrow S$ is invertible, where S is the range of f. Hence find inverse of f.
Q21. Compute, using integration, the area bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$.
Q22. Find the particular solution of the differential equation $x e^{y / x}-y \sin \left(\frac{y}{x}\right)+x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)=0$, given that $\mathrm{y}=0$, when $\mathrm{x}=1$.
OR Obtain the differential equation of all circles of radius r.
Q23. Show that the lines $\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(-3 \hat{i}+\hat{j}+5 \hat{k})$ and $\vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\mu(-\hat{i}+2 \hat{j}+5 \hat{k})$ are coplanar. Also, find the equation of the plane containing these lines.
Q24. 40% students of a college reside in hostel and the remaining reside outside. At the end of year, 50% of the hosteliers got A grade while from outside students, only 30% got A grade in the examination. At the end of year, a student of the college was chosen at random and was found to get A grade. What is the probability that the selected student was a hostelier?
Q25. A man rides his motorcycle at the speed of $50 \mathrm{~km} / \mathrm{h}$. He has to spend Rs. 2 per km on petrol. If he rides it at a faster speed of $80 \mathrm{~km} / \mathrm{h}$, the petrol cost increases to Rs. 3 per km. He has atmost Rs. 120 to spend on petrol and one hour's time. Using LPP find the maximum distance he can travel.
Q26. A jet of enemy is flying along the curve $y=x^{2}+2$ and a soldier is placed at the point (3,2). Find the minimum distance between the soldier and the jet.

SECTION - A

Q01. $\frac{5 \vec{a}+3 \vec{b}}{8}$
Q02. Area of the parallelogram $=\frac{1}{2}\left|\overrightarrow{\mathrm{~d}}_{1} \times \overrightarrow{\mathrm{d}}_{2}\right|=5$ Sq.units
Q03. $\quad \overrightarrow{\mathrm{r}} .(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})=29 \quad$ Q04. $\quad-14 \quad$ Q05. $\quad \mathrm{m}+\mathrm{n}=4 \quad$ Q06. $\quad 2 \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y}=0 \quad[6 \times 1=6$
SECTION - B
Q07. Sale matrix for A, B and C is $\left(\begin{array}{lll}25 & 12 & 34 \\ 22 & 15 & 28 \\ 26 & 18 & 36\end{array}\right)$
Price matrix is $\left(\begin{array}{c}20 \\ 15 \\ 5\end{array}\right)$
$\therefore\left(\begin{array}{lll}25 & 12 & 34 \\ 22 & 15 & 28 \\ 26 & 18 & 36\end{array}\right)\left(\begin{array}{c}20 \\ 15 \\ 5\end{array}\right)=\left(\begin{array}{l}500+180+170 \\ 440+225+140 \\ 520+270+180\end{array}\right)=\left(\begin{array}{l}850 \\ 805 \\ 970\end{array}\right)$
So amount raised by A is Rs. 850 , by B is Rs. 805 and by C is Rs. 970 . $1 / 2$
Values : - Helping the orphans \quad Use of recycled paper $\quad 1+1$
Q08. $\quad A^{2}=A . A=\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}1 & 12 \\ -4 & 1\end{array}\right)$
$\therefore \mathrm{A}^{2}-4 \mathrm{~A}+7 \mathrm{I}=\left(\begin{array}{cc}1 & 12 \\ -4 & 1\end{array}\right)-4\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)+7\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\mathrm{O}$
Now $A^{2}-4 A+7 I=O \Rightarrow A^{2}=4 A-7 I \Rightarrow A^{3}=A \cdot A^{2}=4 A^{2}-7 A=4(4 A-7 I)-7 A=9 A-28 I$
$\therefore A^{3}=9 \mathrm{~A}-28 \mathrm{I}=\left(\begin{array}{cc}18 & 27 \\ -9 & 18\end{array}\right)-\left(\begin{array}{cc}28 & 0 \\ 0 & 28\end{array}\right)=\left(\begin{array}{cc}-10 & 27 \\ -9 & -10\end{array}\right)$
OR $\quad \because \mathrm{A}=\mathrm{IA} \quad \Rightarrow\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 5 & 3 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \mathrm{A}$
By $R_{2} \rightarrow R_{2}-2 R_{1}, \quad\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 7 & 3 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) A$
By $R_{2} \rightarrow R_{2}-3 R_{3}, \quad\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & -3 \\ 0 & 0 & 1\end{array}\right) A$
$\begin{aligned} & \mathrm{By}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2} \\ & \& \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{2}\end{aligned}, \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}-1 & 1 & -3 \\ -2 & 1 & -3 \\ 4 & -2 & 7\end{array}\right) \mathrm{A}$
$\because \mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}, \quad \therefore \mathrm{A}^{-1}=\left(\begin{array}{ccc}-1 & 1 & -3 \\ -2 & 1 & -3 \\ 4 & -2 & 7\end{array}\right)$

Q09. Let $\Delta=\left|\begin{array}{ccc}p x+y & x & y \\ p y+z & y & z \\ 0 & p x+y & p y+z\end{array}\right|$

By $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{pC}_{1}-\mathrm{C}_{3}, \Delta=\left|\begin{array}{ccc}0 & \mathrm{x} & \mathrm{y} \\ 0 & y & z \\ -\mathrm{p}^{2} \mathrm{x}-\mathrm{py}-\mathrm{py}-\mathrm{z} & \mathrm{px}+\mathrm{y} & \mathrm{py}+\mathrm{z}\end{array}\right|$
$11 / 2$

1
Expanding along $\mathrm{C}_{1}, \Delta=\left(-\mathrm{p}^{2} \mathrm{x}-2 \mathrm{py}-\mathrm{z}\right)\left(\mathrm{xz}-\mathrm{y}^{2}\right)$
$\because \mathrm{x}, \mathrm{y}, \mathrm{z}$ are in GP, so $\mathrm{xz}=\mathrm{y}^{2} \Rightarrow \mathrm{xz}-\mathrm{y}^{2}=0$
$\therefore \Delta=0$
$11 / 2$
Q10. $\int_{-1}^{1}|x \cos \pi x| d x=2 \int_{0}^{1}|x \cos \pi x| d x$
$\Rightarrow \quad=2 \int_{0}^{1 / 2} x \cos \pi x d x-2 \int_{1 / 2}^{1} x \cos \pi x d x$
$\Rightarrow \quad=2\left[\frac{\mathrm{x} \sin \pi \mathrm{x}}{\pi}+\frac{\cos \pi \mathrm{x}}{\pi^{2}}\right]_{0}^{1 / 2}-2\left[\frac{\mathrm{x} \sin \pi \mathrm{x}}{\pi}+\frac{\cos \pi \mathrm{x}}{\pi^{2}}\right]_{1 / 2}^{1}$
$\Rightarrow \quad=2\left[\frac{1}{2 \pi}-\frac{1}{\pi^{2}}\right]-2\left[-\frac{1}{\pi^{2}}-\frac{1}{2 \pi}\right]=\frac{2}{\pi}$.
Q11. Put $\begin{aligned} 2 \mathrm{x} & =\mathrm{t} \Rightarrow \mathrm{dx}=\frac{1}{2} \mathrm{dt} \quad \therefore \int \frac{1+\sin 2 \mathrm{x}}{1+\cos 2 \mathrm{x}} e^{2 \mathrm{x}} \mathrm{dx}= \\ \Rightarrow \quad & =\frac{1}{2} \int\left(\frac{1}{2 \cos ^{2}(\mathrm{t} / 2)}+\frac{2 \sin (\mathrm{t} / 2) \cos (\mathrm{t} / 2)}{2 \cos ^{2}(\mathrm{t} / 2)}\right) e^{\mathrm{t}} \mathrm{dt}\end{aligned}$
$\Rightarrow \quad=\frac{1}{2} \int\left(\frac{\sec ^{2}(\mathrm{t} / 2)}{2}+\tan (\mathrm{t} / 2)\right) e^{\mathrm{t}} \mathrm{dt}$
$\because \mathrm{f}(\mathrm{t})=\tan (\mathrm{t} / 2), \mathrm{f}^{\prime}(\mathrm{t})=\frac{\sec ^{2}(\mathrm{t} / 2)}{2} \quad \therefore$ using $\int\left[\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime}(\mathrm{t})\right] e^{\mathrm{t}} \mathrm{dt}=\mathrm{f}(\mathrm{t}) e^{\mathrm{t}}+\mathrm{C} \quad 1 / 2$
$\therefore \int \frac{1+\sin 2 \mathrm{x}}{1+\cos 2 \mathrm{x}} e^{2 \mathrm{x}} \mathrm{dx}=\frac{1}{2} e^{\mathrm{t}} \tan \left(\frac{\mathrm{t}}{2}\right)+\mathrm{C}=\frac{1}{2} e^{2 \mathrm{x}} \tan \mathrm{x}+\mathrm{C}$.
OR $\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x=\int\left(x+1+\frac{1}{(x-1)\left(x^{2}+1\right)}\right) d x \ldots(i)$
Consider $\frac{1}{(x-1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+1} \Rightarrow A=\frac{1}{2}, B=C=-\frac{1}{2}$
By (i), $\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x=\int\left(x+1+\frac{1}{2(x-1)}-\frac{x}{2\left(x^{2}+1\right)}-\frac{1}{2\left(x^{2}+1\right)}\right) d x \quad 1$
$\Rightarrow \quad=\frac{\mathrm{x}^{2}}{2}+\mathrm{x}+\frac{1}{2} \log |\mathrm{x}-1|-\frac{1}{4} \log \left|\mathrm{x}^{2}+1\right|-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{C} . \quad 1+1$
Q12. Let E : Die shows a number greater than 3 and F : there is at least one head.
$\Rightarrow \mathrm{E}:\{\mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6\}, \mathrm{F}:\{\mathrm{HT}, \mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6\}$
$1 / 2+1 / 2$
$\therefore \mathrm{P}(\mathrm{F})=1-1 / 4=3 / 4, \mathrm{P}(\mathrm{E} \cap \mathrm{F})=3 / 12=1 / 4$
$1+1$
$\therefore \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$
OR We have $\mathrm{p}=\frac{1}{2}, \mathrm{q}=\frac{1}{2}$; let the coin be tossed n times.
$\mathrm{P}(\mathrm{r} \geq 1)>\frac{90}{100}$ or $1-\mathrm{P}(\mathrm{r}<1)>\frac{90}{100}$ $1 / 2+1 / 2$
$\Rightarrow 1-\frac{90}{100}>\mathrm{P}(\mathrm{r}=0)$
$\Rightarrow \frac{1}{10}>{ }^{\mathrm{n}} \mathrm{C}_{0}\left(\frac{1}{2}\right)^{\mathrm{n}}\left(\frac{1}{2}\right)^{0} \quad \Rightarrow \frac{1}{2^{\mathrm{n}}}<\frac{1}{10}$
$\Rightarrow 2^{\mathrm{n}}>10$
$\therefore \mathrm{n}=4$
Q13. We are given that
$\left.\begin{array}{l}\vec{a} \times \vec{b}=\vec{c} \Rightarrow \vec{a} \perp \vec{c} \text { and } \vec{b} \perp \vec{c} \\ \vec{a} \times \vec{c}=\vec{b} \Rightarrow \vec{a} \perp \vec{b} \text { and } \vec{c} \perp \vec{b}\end{array}\right\} \Rightarrow \vec{a} \perp \vec{b} \perp \vec{c} \ldots$ (i)
Now, $\vec{a} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}} \Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{c}}| \Rightarrow|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \frac{\pi}{2}=|\overrightarrow{\mathrm{c}}| \Rightarrow|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{c}}|$.
[by (i), $\vec{a} \perp \vec{b}$
[by (i), $\overrightarrow{\mathrm{a}} \perp \overrightarrow{\mathrm{c}}$
1
And, $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \Rightarrow|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{c}}| \sin \frac{\pi}{2}=|\overrightarrow{\mathrm{b}}| \Rightarrow|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{c}}|=|\overrightarrow{\mathrm{b}}| \ldots$
By (ii) \div (iii), we get: $|\overrightarrow{\mathrm{c}}|^{2}=|\overrightarrow{\mathrm{b}}|^{2} \Rightarrow|\overrightarrow{\mathrm{c}}|=|\overrightarrow{\mathrm{b}}|$.
Substitute $|\vec{c}|=|\overrightarrow{\mathrm{b}}|$ in (ii) to obtain, $|\overrightarrow{\mathrm{a}}|=1$.
Q14. The d.r.'s of line L_{1} joining $(4,3,2)$ and $(1,-1,0)$ are $3,4,2$
The d.r.'s of line L_{2} joining $(1,2,-1)$ and $(2,1,1)$ are $1,-1,2$.
A vector perpendicular to both the lines is $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 2 \\ 1 & -1 & 2\end{array}\right|=10 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-7 \hat{\mathrm{k}} \quad 11 / 2$
\therefore eq. of the line through $(1,-1,1)$ and \perp to L_{1} and L_{2} is: $\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(10 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-7 \hat{\mathrm{k}})$
OR Equation of line $A B$ is $\overrightarrow{\mathrm{r}}=(-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(5 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
\therefore Point Q is $(5 \lambda,-1+5 \lambda, 3+\lambda)$
$\overrightarrow{\mathrm{PQ}}=(5 \lambda-1) \hat{\mathrm{i}}+(5 \lambda-9) \hat{\mathrm{j}}+(\lambda-1) \hat{\mathrm{k}}$
$\because \mathrm{PQ} \perp \mathrm{AB} \Rightarrow 5(5 \lambda-1)+5(5 \lambda-9)+1(\lambda-1)=0 \Rightarrow \lambda=1$
\therefore foot of perpendicular is $\mathrm{Q}(5,4,4)$
length of perpendicular is $P Q=\sqrt{4^{2}+(-4)^{2}+0^{2}}=4 \sqrt{2}$ units.

Q15. $\sin ^{-1} 6 x+\sin ^{-1} 6 \sqrt{3} x=-\frac{\pi}{2} \quad \Rightarrow \sin ^{-1} 6 x=-\frac{\pi}{2}-\sin ^{-1} 6 \sqrt{3} x$
$\Rightarrow \sin \sin ^{-1} 6 x=\sin \left(-\frac{\pi}{2}-\sin ^{-1} 6 \sqrt{3} x\right) \quad \Rightarrow 6 x=-\sin \left(\frac{\pi}{2}+\sin ^{-1} 6 \sqrt{3} x\right) \quad 1 / 2$
$\Rightarrow 6 \mathrm{x}=-\cos \left(\sin ^{-1} 6 \sqrt{3} \mathrm{x}\right)=-\sqrt{1-108 \mathrm{x}^{2}}$
$\Rightarrow 36 \mathrm{x}^{2}=1-108 \mathrm{x}^{2} \quad \Rightarrow 144 \mathrm{x}^{2}=1 \quad \Rightarrow \mathrm{x}= \pm \frac{1}{12}$
Since $\mathrm{x}=\frac{1}{12}$ does not satisfy the given equation, $\therefore \mathrm{x}=-\frac{1}{12}$.
OR LHS : $2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31}=2 \tan ^{-1} \frac{3}{4}-\tan ^{-1} \frac{17}{31}$
$\Rightarrow \quad=\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right)-\tan ^{-1} \frac{17}{31}$
$\Rightarrow \quad=\tan ^{-1} \frac{24}{7}-\tan ^{-1} \frac{17}{31}$
$\Rightarrow \quad=\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\frac{24}{7} \times \frac{17}{31}}\right)=\tan ^{-1}(1)=\frac{\pi}{4}=$ RHS.
Q16. Here $\mathrm{x}=\sin \mathrm{t}, \mathrm{y}=\sin \mathrm{kt}$
$\therefore \frac{\mathrm{dx}}{\mathrm{dt}}=\cos \mathrm{t}, \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{k} \cos \mathrm{kt} \quad \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{k} \frac{\cos \mathrm{kt}}{\cos \mathrm{t}}$
$\Rightarrow \cos t \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{k} \cos \mathrm{kt}$
$\Rightarrow \cos ^{2} \mathrm{t}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}=\mathrm{k}^{2} \cos ^{2} \mathrm{kt}$
$\Rightarrow\left(1-\sin ^{2} \mathrm{t}\right)\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}=\mathrm{k}^{2}\left(1-\sin ^{2} \mathrm{kt}\right) \Rightarrow\left(1-\mathrm{x}^{2}\right)\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}=\mathrm{k}^{2}\left(1-\mathrm{y}^{2}\right)$
Differentiating w.r.t. x both the sides,
$\left(1-x^{2}\right) \times 2 \frac{d y}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}(-2 x)=-2 k^{2} y \frac{d y}{d x}$
$\therefore\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+k^{2} y=0$
Q17. Let $u=y^{x}, v=x^{y}, w=x^{x}$
(i) $u=y^{x} \Rightarrow \log u=x \log y \quad \Rightarrow \frac{d u}{d x}=y^{x}\left[\log y+\frac{x}{y} \frac{d y}{d x}\right]$
(ii) $v=x^{y} \Rightarrow \log v=y \log x \quad \Rightarrow \frac{d v}{d x}=x^{y}\left[\log x \frac{d y}{d x}+\frac{y}{x}\right]$
(iii) $\mathrm{w}=\mathrm{x}^{\mathrm{x}} \Rightarrow \log \mathrm{w}=\mathrm{x} \log \mathrm{x} \quad \Rightarrow \frac{\mathrm{dw}}{\mathrm{dx}}=\mathrm{x}^{\mathrm{x}}[\log \mathrm{x}+1]$

Now $y^{x}+x^{y}+x^{x}=a^{b} \quad \Rightarrow u+v+w=a^{b} \quad \Rightarrow \frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}=0$
$\Rightarrow y^{x}\left[\log y+\frac{x}{y} \frac{d y}{d x}\right]+x^{y}\left[\log x \frac{d y}{d x}+\frac{y}{x}\right]+x^{x}[\log x+1]=0$
$\therefore \frac{d y}{d x}=-\frac{y^{x} \log y+y x^{y-1}+x^{x}[\log x+1]=0}{\log x+x^{x-1}}$
Q18. Given $f(x)=x^{3}+b x^{2}+a x+5$ on $[1,3]$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{bx}+\mathrm{a} \Rightarrow \mathrm{f}^{\prime}(\mathrm{c})=3 \mathrm{c}^{2}+2 \mathrm{bc}+\mathrm{a}=0 \Rightarrow 3\left(2+\frac{1}{\sqrt{3}}\right)^{2}+2 \mathrm{~b}\left(2+\frac{1}{\sqrt{3}}\right)+\mathrm{a}=0 \ldots$ (i) $1+1$
Also $\mathrm{f}(1)=\mathrm{f}(3) \Rightarrow \mathrm{b}+\mathrm{a}+6=32+9 \mathrm{~b}+3 \mathrm{a}$ or, $\mathrm{a}+4 \mathrm{~b}=-13 \ldots$ (ii)
Solving (i) and (ii), we get : $a=11, b=-6$.
Q19. Let $1+3 \mathrm{x}=\mathrm{A} \frac{\mathrm{d}}{\mathrm{dx}}\left[5-2 \mathrm{x}-\mathrm{x}^{2}\right]+\mathrm{B} \Rightarrow 1+3 \mathrm{x}=\mathrm{A}(-2 \mathrm{x}-2)+\mathrm{B} \Rightarrow \mathrm{A}=-\frac{3}{2}, \mathrm{~B}=-2$
$\int \frac{1+3 \mathrm{x}}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}=-\frac{3}{2} \int \frac{-2-2 \mathrm{x}}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}-2 \int \frac{1}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$\Rightarrow \quad=-\frac{3}{2}\left[2 \sqrt{5-2 x-x^{2}}\right]-2 \int \frac{d x}{\sqrt{[\sqrt{6}]^{2}-[x+1]^{2}}}$
$\Rightarrow \quad=-3 \sqrt{5-2 x-x^{2}}-2 \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+C$.

SECTION - C

Q20. Reflexivity : Let (a, b) be an arbitrary element of $\mathrm{A} \times \mathrm{A}$. Then, $(a, b) \in A \times A \Rightarrow a, b \in A$.
So, $a+b=b+a \Rightarrow(a, b) R(a, b)$

Thus, $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{a}, \mathrm{b}) \forall(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{A}$. Hence R is reflexive.
Symmetry : Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{A} \times \mathrm{A}$ be such that (a, b) $\mathrm{R}(\mathrm{c}, \mathrm{d})$.
Then, $\mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c} \Rightarrow \mathrm{c}+\mathrm{b}=\mathrm{d}+\mathrm{a} \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$.
Thus, $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b}) \forall \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{A} \times \mathrm{A}$. Hence R is symmetric.
Transitivity : Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathrm{A} \times \mathrm{A}$ be such that (a, b) $\mathrm{R}(\mathrm{c}, \mathrm{d})$ and ($\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{e}, \mathrm{f})$.
Then, $a+d=b+c$ and $c+f=d+e \Rightarrow(a+d)+(c+f)=(b+c)+(d+e) \Rightarrow a+f=b+e$
$\Rightarrow(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{e}, \mathrm{f})$. That is, $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ and $(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{e}, \mathrm{f}) \Rightarrow(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{e}, \mathrm{f}) \forall \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathrm{A} \times \mathrm{A}$.
Hence R is transitive.
Since R is reflexive, symmetric and transitive so, R is an equivalence relation as well.
For the equivalence class of $[(2,5)]$, we need to find (a, b) s. t. $(a, b) R(2,5) \Rightarrow a+5=b+2$
$\Rightarrow \mathrm{b}-\mathrm{a}=3$. So, $[(2,5)]=\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$.
OR Let y be an arbitrary element of range of function. Then $\mathrm{y}=4 \mathrm{x}^{2}+12 \mathrm{x}+15$, for some x in N, which implies that $\mathrm{y}=(2 \mathrm{x}+3)^{2}+6$. This gives $\mathrm{x}=\frac{\sqrt{\mathrm{y}-6}-3}{2}$, as $\mathrm{y} \geq 6$.
Let us define $g: S \rightarrow N$ by $g(y)=\frac{\sqrt{y-6}-3}{2}$.
Now, $\operatorname{gof}(x)=g(f(x))=g\left(4 x^{2}+12 x+15\right)=g\left((2 x+3)^{2}+6\right)=\frac{\sqrt{\left((2 x+3)^{2}+6\right)-6}-3}{2}=x$.
And, $f \circ g(y)=f(g(y))=f\left(\frac{\sqrt{y-6}-3}{2}\right)=\left(2\left(\frac{\sqrt{y-6}-3}{2}\right)+3\right)^{2}+6=y$.
Hence, gof $=I_{N}$ and fog $=I_{S}$. This implies that f is invertible with $\mathrm{f}^{-1}=\mathrm{g}$.
So, $\mathrm{f}^{-1}(\mathrm{x})=\frac{\sqrt{\mathrm{x}-6}-3}{2}$.
Q21. Let the lines be, $A B: x+2 y=2, C A: y-x=1$ and $B C: 2 x+y=7$.
\therefore Points of intersection are $\mathrm{A}(0,1), \mathrm{B}(4,-1)$ and $\mathrm{C}(2,3)$
Required area $=\frac{1}{2} \int_{-1}^{3}(7-y) d y-\int_{-1}^{1}(2-2 y) d y-\int_{1}^{3}(y-1) d y$
$\Rightarrow \quad=\frac{1}{2}\left[7 y-\frac{1}{2} y^{2}\right]_{-1}^{3}-\left[2 y-y^{2}\right]_{-1}^{1}-\left[\frac{1}{2} y^{2}-y\right]_{1}^{3}$
$\Rightarrow \quad=12-4-2=6$ Sq.units

Q22. Given differential equation is homogeneous.
$\therefore y=v x \quad \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
So, $\frac{d y}{d x}=\frac{y \sin \left(\frac{y}{x}\right)-x e^{y / x}}{x \sin \left(\frac{y}{x}\right)} \quad \Rightarrow v+x \frac{d v}{d x}=\frac{v x \sin \left(\frac{v x}{x}\right)-x e^{v x / x}}{x \sin \left(\frac{v x}{x}\right)}=\frac{v \sin v-e^{v}}{\sin v}$
$\Rightarrow v+x \frac{d v}{d x}=v-\frac{e^{v}}{\sin v}$ or $x \frac{d v}{d x}=-\frac{e^{v}}{\sin v}$
$\therefore \int \mathrm{e}^{-\mathrm{v}} \sin \mathrm{vdv}=-\int \frac{\mathrm{dx}}{\mathrm{x}} \quad \Rightarrow \mathrm{I}_{1}=-\log \mathrm{x}+\mathrm{C}_{1} \ldots$ (i)
Now $\therefore \mathrm{I}_{1}=\int \mathrm{e}^{-\mathrm{v}} \sin \mathrm{vdv}=\sin v \int \mathrm{e}^{-\mathrm{v}} \mathrm{dv}+\int \mathrm{e}^{-\mathrm{v}} \cos \mathrm{vdv}$
$\Rightarrow \quad=-\mathrm{e}^{-\mathrm{v}} \sin \mathrm{v}-\mathrm{e}^{-\mathrm{v}} \cos \mathrm{v}-\int \mathrm{e}^{-\mathrm{v}} \sin \mathrm{vdv} \quad \Rightarrow \mathrm{I}_{1}=-\frac{1}{2} \mathrm{e}^{-\mathrm{v}}(\sin \mathrm{v}+\cos \mathrm{v})+\mathrm{C}_{2}$
Putting value of I_{1} in (i), $-\frac{1}{2} \mathrm{e}^{-\mathrm{v}}(\sin \mathrm{v}+\cos \mathrm{v})=-\log \mathrm{x}+\mathrm{C}_{1}+\mathrm{C}_{2}$
$e^{-y / x}\left(\sin \frac{y}{x}+\cos \frac{y}{x}\right)=\log x^{2}+C$, where $C=-2 C_{1}-2 C_{2}$
As it is given that $\mathrm{y}=0$, when $\mathrm{x}=1$, so $\mathrm{C}=1$.
Hence the solution is $e^{-y / x}\left(\sin \frac{y}{x}+\cos \frac{y}{x}\right)=\log x^{2}+1$
OR Let the equation of circle be $(x-a)^{2}+(y-b)^{2}=r^{2}$
$\Rightarrow 2(x-a)+2(y-b) \frac{d y}{d x}=0 \ldots$ (ii)
$\Rightarrow 1+(y-b) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0 \ldots$ (iii)
$\therefore(\mathrm{y}-\mathrm{b})=-\frac{1+\left(\mathrm{y}_{1}\right)^{2}}{\mathrm{y}_{2}}$
From (ii), $(x-a)=\left[\frac{1+\left(y_{1}\right)^{2}}{y_{2}}\right] y_{1}$
Putting these values in (i), we get : $\left[\frac{1+\left(y_{1}\right)^{2}}{y_{2}}\right]^{2}\left(y_{1}\right)^{2}+\left[-\frac{1+\left(y_{1}\right)^{2}}{y_{2}}\right]^{2}=r^{2}$
or $\left[1+\left(\mathrm{y}_{1}\right)^{2}\right]^{3}=\left(\mathrm{ry}_{2}\right)^{2}$.
Q23. Here $\vec{a}_{1}=-3 \hat{i}+\hat{j}+5 \hat{k}, \vec{b}_{1}=-3 \hat{i}+\hat{j}+5 \hat{k}, \vec{a}_{2}=-\hat{i}+2 \hat{j}+5 \hat{k}, \vec{b}_{2}=-\hat{i}+2 \hat{j}+5 \hat{k}$
Now $\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right) \cdot\left(\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right)=\left|\begin{array}{rrr}2 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5\end{array}\right|=2(-5)-1(-15+5)=-10+10=0$
Perpendicular vector to the plane $\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{j} & \hat{k} \\ -3 & 1 & 5 \\ -1 & 2 & 5\end{array}\right|=-5 \hat{i}+10 \hat{j}-5 \hat{k}$ or $\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
\therefore Eq. of plane : $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})=(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot(-3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+5 \hat{\mathrm{k}}) \quad \Rightarrow \mathrm{x}-2 \mathrm{y}+\mathrm{z}=0$
Q24. Let E_{1} : Student resides in the hostel, E_{2} : Student resides outside the hostel, A: Getting A grade in the examination.
$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{40}{100}=\frac{2}{5}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{3}{5}, \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=\frac{50}{100}=\frac{1}{2}, \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\frac{30}{100}=\frac{3}{10}$.
By Bayes' theorem, $P\left(E_{1} \mid A\right)=\frac{P\left(A \mid E_{1}\right) P\left(E_{1}\right)}{P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)}$
$\Rightarrow \quad=\frac{\frac{2}{5} \times \frac{1}{2}}{\frac{2}{5} \times \frac{1}{2}+\frac{3}{5} \times \frac{3}{10}}=\frac{10}{19}$
Q25. Let the distance travelled @ $50 \mathrm{~km} / \mathrm{h}$ be xkm and that @ $80 \mathrm{~km} / \mathrm{h}$ be y km.
To Maximize : $\mathrm{D}=\mathrm{x}+\mathrm{y}$
Subject to constraints : $2 x+3 y \leq 120, \frac{x}{50}+\frac{y}{80} \leq 1$ or $8 x+5 y \leq 400, x \geq 0, y \geq 0 \quad 1 / 2+2$
Vertices are $(0,40),(300 / 7,80 / 7),(50,0)$
Maximum D is at $(300 / 7,80 / 7)$
Maximum $\mathrm{D}=\frac{380}{7} \mathrm{~km}=54 \frac{2}{7} \mathrm{~km}$.

Q26. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the position of the jet and the soldier is placed at $\mathrm{A}(3,2)$.
$\Rightarrow \mathrm{AP}=\sqrt{(\mathrm{x}-3)^{2}+(\mathrm{y}-2)^{2}} \ldots$ (i)
As $y=x^{2}+2 \Rightarrow x^{2}=y-2 \ldots$ (ii)
$\Rightarrow \mathrm{AP}^{2}=(\mathrm{x}-3)^{2}+\mathrm{x}^{4}=\mathrm{z}$ (Say)
$\Rightarrow \frac{\mathrm{dz}}{\mathrm{dx}}=2(\mathrm{x}-3)+4 \mathrm{x}^{3}$ and $\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}=2+12 \mathrm{x}^{2}$
For local points of maxima/minima, $\frac{\mathrm{dz}}{\mathrm{dx}}=0 \Rightarrow 2(\mathrm{x}-3)+4 \mathrm{x}^{3}=0 \Rightarrow \mathrm{x}=1$
And $\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}($ at $\mathrm{x}=1)=14>0$
$\therefore \mathrm{z}$ is minimum when $\mathrm{x}=1, \mathrm{y}=1+2=3$
Also minimum distance $=\sqrt{(3-1)^{2}+1^{2}}=\sqrt{5}$ units.

