MATHEMATICS CLASS XII

Time: 3 hours General Instructions:

1. All questions are compulsory.

- The question paper consists of 29 questions divided into three sections A, B,C and D. Section A comprises 4 questions of one mark each, Section B comprises 8 questions of two marks each, Section C comprises 13 questions of four marks each and Section D comprises 6 questions of six marks each.
- 3. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the questions.
- 4. Use of calculator is not permitted. You may ask for logarithmic tables, if required.

SECTION – A If $f: \mathbf{R} \to \mathbf{R}$ be defined by $f(\mathbf{x}) = (3 - \mathbf{x}^3)^{1/3}$, then find (f o f) (x). Q1 1 Q2 1 If \hat{a}, \hat{b} and \hat{c} are mutually perpendicular unit vectors, then find the value of $|2\hat{a}+\hat{b}+\hat{c}|$. If A is a square matrix $A^2 = A$, then write the value of $(I + A)^2 - 3A$. 1 Q3 1 Q4 Let * be a binary operation on the set of all non – zero real numbers, given by a * b = $\frac{ab}{r}$ for all a, b $\in R - \{0\}$. Find the value of x, given that $2^*(x * 5) = 10$. **SECTION - B** Q5 2 Solve the equation $\sin^{-1} 6x + \sin^{-1} 6\sqrt{3}x = -\frac{\pi}{2}$ Q6 If A is 3×3 invertible matrix and $(5A)^{-1} = k A^{-1}$, find k. 2 Q7 2 Evaluate $\int \tan^8 x \sec^4 x dx$ Verify mean value theorem for the function f(x) = (x-3)(x-6)(x-9) in [3,5]. 2 08 Q9 The 2 vectors $\hat{j} + \hat{k}and\hat{3}i - \hat{j} + 4\hat{k}$ represents the two sides AB and AC, respectively of a 2 $\triangle ABC$. Find the length of the median through A. **O**10 In 3 trials of a binomial distribution, the probability of exactly 2 successes is 9 times the 2 probability of 3 successes. Find the probability of success in each trial. Find the equation of a curve whose tangent at any point on it, different from origin, has slope 2 011 $y + \frac{y}{2}$

Q12 Water is dripping out from a conical funnel of semi – vertical angle $\frac{\pi}{4}$ at the uniform rate of

2

MM: 100

 2cm^2 /sec in the surface area, through a tiny hole at the vertex of the bottom. When the slant height of cone is 4 cm, find the rate of decrease of the slant height of water.

Q13 Determine the values of a,b,c if the function

i) Rs 50 ii) Rs 20 iii) Rs 40

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} & \text{if } x < 0\\ c & \text{if } x = 0 \text{ is continuous at } x = 0\\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{3/2}} & \text{if } x > 0 \end{cases}$$

Q14 For what values of a,b and c, if any, does the function

$$f(x) = \begin{cases} ax^2 + bx + c, & 0 \le x \le 1 \\ bx - c, & 1 < x \le 2. \text{ become differentiable at } x = 1 \text{ and } x = 2? \\ c, & x > 2 \end{cases}$$

Q15 To promote the making of toilets for women, an organization tried to generate awareness 4 through i) house calls, ii) letters, and iii) announcements. The cost for each mode per attempt is given below:

The number of attempts made in three villages X,Y and Z are given below:				
	(i)	(ii)	(iii)	
Х	400	300	100	
Y	300	250	75	
Z	500	400	150	

Find the total cost incurred by the organization for the three villages separately, using matrices. Write one value generated by the organization in the society.

- Q16 Find the equation of tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line 4x - 2y + 54 = 0.
- Three numbers are given whose sum is 180 and the ratio between first two of them is 1:2. If 4 017 the product of the number is greatest, find the numbers.

Q18 Evaluate :
$$\int \frac{\sin x - x \cos x}{x(x + \sin x)} dx$$
 or Evaluate : $\int e^{2x} \sin(3x + 1) dx$.

019 Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y\cos y}$, given that

$$y = \frac{\pi}{2}$$
 when $x = 1$.

OR

From the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

Q20 If $\vec{\alpha} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{\beta} = 2\hat{i} + \hat{j} - 4\hat{k}$, then express $\vec{\beta}$ in the from $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where 4 $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.

A line passing through the point A with position vector $\vec{a} = 4\hat{i} + 2\hat{j} + 2\hat{k}$ is parallel to the Q21 vector $\vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}$. Find the length of the perpendicular drawn on this line from a point P with position vector $\vec{r_1} = \hat{i} + 2\hat{j} + 3\hat{k}$.

School Of Math S.C.F. 33, Sector-4 Market, Gurgaon-122001.Ph:8586000650

4

4

4

4

OR

let P (3,2,6) be a point in the space and Q be a point on the line $\vec{x} = \hat{x} + \hat{y} + \hat{y$

$$r = i - j + 2k + \mu (-3i + j + 5k),$$

then find the value of μ for which the vector \overline{PQ} is parallel to the plane x - 4y + 3z = 1.

- Q22 In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from 4 this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.
- Q23 Three cards are drawn successively with replacement from a well shuffled pack of 52 cards.
 Find the probability distribution of the number of spades. Hence find the mean of the distribution.

SECTION – D

Q24 Let A = Q×Q where Q is the set of all rational numbers, and * be a binary operation on A defined by (a,b) * (c,d) = (ac, b + ad) for (a,b), (c,d) ∈ A. Then find (i) The defined element of * in A.
ii) Invertible elements of A, and hence write the inverse of elements (5,3) and (1/2, 4).

OR

If the function $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = 2x - 3 and g: $\mathbb{R} \to \mathbb{R}$ by g (x) = $x^3 + 5$. then find the value of (fog)⁻¹ (x).

6

6

Q25 Using properties of determinants, Prove the following:

$$\begin{vmatrix} x & x^{2} & 1+px^{3} \\ y & y^{2} & 1+py^{3} \\ z & z^{2} & 1+pz^{3} \end{vmatrix} = (1+pxyz)(x-y)(y-z)(z-x).$$
OR
$$Prove \text{ that } \begin{vmatrix} yz-x^{2} & zx-y^{2} & xy-z^{2} \\ zx-y^{2} & xy-z^{2} & yz-x^{2} \\ xy-z^{2} & yz-x^{2} & zx-y^{2} \end{vmatrix} \text{ is divisible by (x + y + z), and hence find the}$$

quotient.

- Q26 Using the method of integration, find the area of the triangular region whose vertices are (2,-2), (4,3) and (1,2).
- Q27 Evaluate : $\int_{1}^{3} (e^{2-3x} + x^2 + 1) dx$ as a limit of a sum. OR Evaluate : $\int_{1}^{\pi/2} \frac{x \sin x \cos x}{dx} dx$.

luate :
$$\int_0^{10} \frac{x \sin^4 x \cos^4 x}{\sin^4 x + \cos^4 x} dx$$

Q28

Find the distance of point ((-2, 3, -4) from the line $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$ measured 6

- parallel to the plane 4x + 12y 3z + 1 = 0.
- Q29 A box manufacturer makes large and small boxes from a large piece of cardboard. The large boxes require 4 sq m per box while the small boxes require 3 sq m per box. The manufacturer is required to make at least three large boxes and at most twice as many small boxes as large boxes. If 60 sq m of cardboard is in stock, and if the profits on the large and small boxes are Rs 3 and Rs 2 respectively, how many of each should be made in order to maximize the total profit? Formulate the above L.P.P. mathematically and then solve it graphically.

Ans : 1	(fof)(x)	$= x 2 \sqrt{6}$	53I42	25 5 $x = \pm \frac{1}{12}$ 6 $\frac{1}{5}$ 7 $\frac{\tan^{11} x}{11} + \frac{\tan^9 x}{9} + C$		
8 $c = 6 - \sqrt{\frac{13}{3}}$ 9 $\frac{\sqrt{34}}{2}$ 10 p = $\frac{1}{4}$ 11 y = kx · e ^x · 12 $\frac{\sqrt{2}}{4\pi}$ cm/s. 13 a = $-\frac{3}{2}$, c = $\frac{1}{2}$ and b is						
any non –	any non – zero real number. 14 $a = 0, b = 0, c = 0$					
15 x = Rs 30,000 , y = Rs 23000, z = Rs 39000 16 $48x - 24y = 23$ 17 40, 80,60						
18 $\log x -\log x + \sin x + C$ or $\frac{2}{13}e^{2x}\sin(3x+1) - \frac{3}{13}e^{2x}\cos(3x+1) + C$						
19 $y \sin y = x^2 \log x + \frac{\pi}{2}$ or $(x^2 + 2xy) \left(\frac{dy}{dx}\right)^2 - 2xy \frac{dy}{dx} + y^2 + 2xy = 0$						
20 $\beta_1 = -\frac{3}{5}\hat{i} - \frac{4}{5}\hat{j} - \hat{k}, \beta_2 = \frac{13}{5}\hat{i} + \frac{9}{5}\hat{j} - 3\hat{k}$ 21 $\sqrt{10}$ units or $\frac{1}{4}$ 22 $\frac{8}{9}$						
23						
Х	0	1	2	3		
P(X)	27	27	9	1		
	64	64	64	64		
$\overline{x} = \frac{3}{4}$ 24 (i) (1,0) (ii) (a,b) $\in A \ a \neq 0$ are invertible elements; $\left(\frac{1}{5}, -\frac{3}{5}\right), (2-8)$ with OR						
$(fog)^{-1}: \mathbb{R} \to \mathbb{R}given by (fog)^{-1}(x) = \sqrt[3]{\frac{x-7}{2}}$						
26 area = $\frac{13}{2}$ sq.units 27 $\frac{32 - e^{-7} + e^{-1}}{3}$ OR $\frac{\pi^2}{16}$ 28 $\frac{17}{2}$ units 29 no. of large boxes = 15,						
number of small boxes $= 0$ and maximum profit $= \text{Rs } 45$.						
Ċ						