Summative Assessment - I (2014-15)

Sample paper
 Class-IX
 MATHEMATICS

TIME: 3 Hrs

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 31 questions divided into four sections A, B, C and D. Section A comprises of 4 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and section D comprises of 11 questions of 4 marks each.
(iii) Use of calculator is not permitted.

SECTI ON - A

Question numbers 1 to $\mathbf{4}$ carry one mark each.

1. Find the value of p if $\mathrm{x}=\frac{\sqrt{7}}{5}$ and $\frac{5}{x}=p \sqrt{7}$?
2. If $x^{99}+99$ is divided by $x+1$, then find remainder ?
3. Simplify: $\left[(2)^{0}+(-3)^{0}+(-14)^{0}\right]^{2}$
4. If an angle is 14° more than its complement, then find its measure.

SECTION - B

Question numbers 5 to $\mathbf{1 0}$ carry two marks each.

5. Find four rational numbers between $\frac{1}{6}$ and $\frac{3}{7}$.
6. Using suitable identity: $(2 x-3)^{3}+(y-2 z)^{3}+8(z-x)^{3}$
7. In the given figure, if AOB is a straight line , find $\angle \mathrm{AOC}, \angle \mathrm{BOD}$ and $\angle \mathrm{BOC}$

APEX INSTITUTE'

8. $C E$ and $B F$ are perpendiculars to $A B$ and $A C$ respectively in $\triangle A B C$ such that $B E=C F$. Prove that $\angle \mathrm{B}=\angle \mathrm{C}$.
9. Sides of a triangle are in ratio 12: 17: 25 and its perimeter is 540 cm . Find its area.
10. A point lies on x-axis at a distance of 7 units from y-axis .What are its coordinates?

What will be the coordinate of a point if it lies on y-axis at a distance of 7 units from x-axis in negative direction?

SECTI ON-C

Question number 11 to $\mathbf{2 0}$ carry three marks each.

11. Factorize $8 a^{3}+b^{3}-12 b a^{2}+6 a b^{2}$
12. Represent $\sqrt{9.6}$ on the real number line
13. Check whether $\mathrm{f}(\mathrm{x})=4 x^{3}+4 x^{2}-x-1$ is a multiple of $2 x+1$
14. Prove that if two lines intersect each other, then the vertically opposite angles are equal.
15. Express $98.3 \overline{76}$ in the form of $\frac{p}{q}$, where p, q are integers and $q \neq 0$
16. $\quad A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$. Is drawn perpendicular to CD and Show that $\angle \mathrm{A}>\angle \mathrm{C}$ and $\angle \mathrm{B}>\angle \mathrm{D}$.

17. In the given figure, $A C B D$ is a quadrilateral with $A C=A D$ and $A B$ bisects $\angle A$.show that $\triangle A B C \cong \triangle A B D$. What can you say about $B C$ and $B D$?

18. Find the rational numbers ' p ' and ' q ':

$$
\frac{7+\sqrt{5}}{7-\sqrt{5}}-\frac{7-\sqrt{5}}{7+\sqrt{5}}=p+q \sqrt{5}
$$

19. Plot the points $M(4,3) ; N(4,0) ; O(0,0) ; P(0,3)$ and join them in order. Name the figure so formed. Also, find the perimeter of figure obtain
20. Explain Euclid's Fifth Postulate? On its basis explain the existence of parallel lines.

SECTI ON- D

Question numbers 21 to 31 carry four marks each.

21. Factorize: $a^{3}-b^{3}+1+3 a b$

APEK INSTITUTE"

22. The polynomial $p(x)=a x^{3}-3 x^{2}+4$ and $g(x)=2 x^{3}-5 x+a$ when divided by $(x-2)$ and ($x-3$) leave the remainders p and q respectively. If $p-2 q=4$, find the value of a.
23. Simplify: $-\frac{3}{\sqrt{3}+\sqrt{2}}-\frac{3 \sqrt{2}}{\sqrt{6}+\sqrt{3}}+\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}$
24. $A B C$ is a right angled triangle with $A B=A C$. Bisector of $\angle A$ meets $B C$ at D. Prove that $B C=2 A D$
25. In the given figure , OP bisects $\angle \mathrm{BOC}$ and OQ bisects $\angle \mathrm{AOC}$. Show that $\angle \mathrm{POQ}=$ 90°.

26. Prove that angles opposite to equal sides in a triangle are equal.
27. The bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ of $\triangle \mathrm{ABC}$ intersect each other at the point O . Prove that

$$
\angle B O C=90^{\circ}+\frac{1}{2} \angle A
$$

28. The given figure if $\mathrm{AB} \| \mathrm{CD}$, if EF is drawn perpendicular to CD and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

29. i) If $x^{2}+\frac{1}{x^{2}}=51$, find $x+\frac{1}{x}$
ii) Without actually calculating the cubes find the value of $(0.4)^{3}-(0.2)^{3}+(0.6)^{3}$

30 The students of a school staged a rally for cleanliness campaign. They walked through the lanes in two groups. One group walked through the lanes $A B, B C$ and $C A$, while the other group through $A C, C D$ and $D A$. Then They cleaned the area enclosed within their lanes. If $\mathrm{AB}=9 \mathrm{~m}, \mathrm{AC}=15 \mathrm{~m}, \mathrm{CD}=18 \mathrm{~m}$ and $\angle \mathrm{B}=90^{\circ}$, find which group cleaned more area and by how much? Find the total area cleaned and which value is depicted by the students ?
31 Without actual division prove that $8 x^{4}-2 x^{3}+5 x^{2}+7 x-2$ is exactly divisible by $x^{2}-2 x+3$.

