Mishra tutorial

A 237 Qutub Vihar Goyla Dairy ph 1, 9999202554

Class 10 - Mathematics
 Class 10

Time Allowed: 1 hour

Section A

1. The HCF of 867 and 255 is
a) 51
b) 35
c) 25
d) 55
2. The HCF of two consecutive odd numbers is
a) 2
b) 0
c) 1
d) 3
3. If $\mathrm{m}^{2}-1$ is divisible by 8 , then ' m ' is
a) an odd integer
b) a natural number
c) an even integer
d) a whole number
4. The LCM of 24,60 and 150 is
a) 2400
b) 1800
c) 600
d) 1200
5. If two positive integers ' a ' and ' b ' are written as $a=p q^{2}$ and $b=p^{3} q^{2}$, where ' p ' and ' q ' are prime numbers, then $\operatorname{LCM}(a, b)=$
a) $p q$
b) $p^{3} q^{2}$
c) $p^{2} q^{3}$
d) $p^{2} q^{2}$
6. $1.23 \overline{48}$ is
a) a rational number
b) terminating decimal
c) an irrational number
d) an integer
7. The HCF of two consecutive numbers is
a) 2
b) 0
c) 3
d) 1
8. A number when divided by 61 gives 27 as quotient and 32 as remainder, then the
number is:
a) 1796
b) 1569
c) 1679
d) 1967
9. If two positive integers ' m ' and ' n ' can be expressed as $m=x^{2} y^{5}$ and $n=x^{3} y^{2}$,where ' x ' and ' y ' are prime numbers, then $\operatorname{HCF}(m, n)=$
a) $x^{2} y^{2}$
b) $x^{2} y^{3}$
c) $x^{3} y^{2}$
d) $x^{3} y^{3}$
10. The LCM of two co-prime numbers is
a) 0
b) Their product
c) their sum
d) their difference
11. Every positive odd integer is of the form $2 q+1$, where ' q ' is some
a) None of these
b) whole number
c) natural number
d) integer
12. Every positive odd integer is of the form \qquad where ' q ' is some integer.
a) $2 q+2$
b) $5 q+1$
c) $3 q+1$
d) $2 q+1$

Section B

13. Show that the cube of a positive integer is of the form $6 q+r$, where q is an integer and $r=0,1,2,3,4,5$.
14. Prove that $6+\sqrt{2}$ is irrational.
15. Show that every positive even integer is of the from $2 q$ and that every positive odd integer is of the form $2 q+1$ for some integer q.
16. Prove that $\sqrt{3}$ is irrational.
17. Express the following in the form p / q, where p and q are integers and $\mathrm{q} \neq 0$.
$0 . \overline{2341}$

Section C

18. Show that one and only one out of n, $(n+2)$ or $(n+4)$ is divisible by 3, where n EN.
19. Prove that $3+2 \sqrt{5}$ is irrational.
20. Factorise the following and find the LCM of:
$11 \mathrm{x}^{3}(\mathrm{x}+1)^{3}$ and $121 \mathrm{x}\left(2 \mathrm{x}^{2}+3 \mathrm{x}+1\right)$
21. Prove that $6+\sqrt{2}$ is irrational.
22. The HCF and LCM of two polynomials $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are $(2 \mathrm{x}-1)$ and
$\left(6 x^{3}+25 x^{2}-24 x+5\right)$ respectively. If $P(x)=2 x^{2}+9 x-5$, determine $\mathrm{Q}(\mathrm{x})$.
23. Show that the square of any positive integer cannot be of the form $3 m+2$, where m is a natural number.
24. Wrtie the HCF and LCM of smallest odd composite number and the smallest odd prime number. If an odd number p divides q^{2}, then will it divide q^{3} also? Explain.
25. Find the HCF and LCM of the following pairs of positive integers by applying the prime factorization method: 72,90
26. Find the zeroes of the given quadratic polynomials and verify the relationship between the zeroes and the coefficients. $6 x^{2}-3-7 x$
27. Find the values of a and b so that the polynomials $P(x)$ and $Q(x)$ have $\left(x^{2}-x-12\right)$ as their HCF, where
$P(x)=\left(x^{2}-5 x+4\right)\left(x^{2}+5 x+a\right)$ $Q(x)=\left(x^{2}+5 x+6\right)\left(x^{2}-5 x-2 b\right)$

Section D

28. State Fundamental theorem of Arithmetic. Find LCM of numbers 2520 and 10530 by prime factorization method.
29. Find the maximum number of students among whom 1001 pens and 910 pencils can be distributed in such a way that each student gets the same number of pens and the same number of pencils.
30. Show that cube of any positive integer is of the form $4 m, 4 m+1$ or $4 m+3$, for some integer m.
31. If d is H.C.F of 45 and 27 , find x and y satisfying $d=27 x+45 y$.
32. Prove that the area of $\triangle A B C$ is irrational

33. State Fundamental theorem of Arithmetic. Is it possible that HCF and LCM of two numbers be 24 and 540 respectively. Justify your answer.
34. On GT road, three consecutive traffic lights change after $36 \mathrm{~s}, 42 \mathrm{~s}$ and 72 s . If the
lights are first switched on at 9.00 am , then at what time will they change simultaneously.
