cbse Sguess	CBSEGuess.com

56 , A Block Shopping Complex, Naraina Vihar, New Delhi 110028 Phone : 9899300948, www.cssplonline.com/physics

CLASS XI SAMPLE PAPER PHYSICS

GRAVITATION

Syllabus:

The universal law of gravitation, Gravitational constant; Acceleration due to gravity and its variation with altitude, latitude, depth and rotation of earth. Mass of earth Gravitational potential near the surface of the earth, gravitational potential; Escape velocity, orbital velocity of satellite, Weightlessness, motion of satellite, geostationary and polar satellites; Statement of Kepler's laws of planetary motion; proof of second and third law (circular orbits) Inertial and gravitational mass.

Questions :

Q.1> Define Gravitation. How is it different from gravity?
Q.2> State Newton's law of gravitation. Express it in vector form
Q.3> What is " G " ? Mention its value, units and dimensions.
Q.4> Mention 5 important characteristics of gravitational force
Q.5> What is acceleration due to gravity? On what factors does it depend?
(b) What is its value at the earth's surface?
Q.6> Assuming the earth to be a uniform sphere of radius 6400 Kms and density $5.5 \mathrm{gm} / \mathrm{cc}$, find the value of g on the surface of earth
Q.7> Two metal spheres of mass M each are kept at a distance R. The gravitational force b / w them is found to be F . What will be the force b / w them if

(a) Mass of each is doubled while distance b / w them is made four times
(b) Mass of one of them is doubles while distance is kept R itself
(c) Both of them are kept in water at a distance R
Q.8> The mass of a planet is $10^{20} \mathrm{~kg}$ while its radius is 5000 kms . What will be the gravitational force experienced by a spacecraft of mass 200kg standing on its surface.
(b) What is the acceleration near the surface of this planet
Q.9> The acceleration due to gravity near the earth's surface is found to be $9.81 \mathrm{~m} / \mathrm{s} 2$. Radius of the earth is 6400 kms . Using this data find the mass of earth.
Q. 10 > Using the mass of earth calculated in the previous question, find the density of earth. In real life, is the density of earth uniform?
Q.11> Derive the value of acceleration due to gravity at a height h above the earth's surface
Q.12> Derive the value of acceleration due to gravity at a depth d below the earth's surface
Q.13> How does the shape of earth affect the value of " g " ?
Q.14> How does the rotation of earth affect the value of " g " ? Derive the value of acceleration due to gravity at a place having latitude λ.
Q.15> With what angular velocity should the earth rotate so that a person at the equator does not experience any gravity?
Q.16> At what height above the earth's surface does the value of " g " become one tenth of its value at the surface.
Q.17> At what height above the earth's surface does the value of " g " become 64% of its value on the surface.
Q.18> Find the percentage change in the weight of a body if it is taken to a height equal to the earth's radius
Q.19> At what depth below the earth's surface does the value of " g " become 50% of its value on the surface.
Q. 20 Find the value of acceleration due to gravity at the top of Mount Everest (height 10 km)
Q. $21>$ Determine the speed with which the earth should rotate so that a person on the equator would weigh $1 / 5^{\text {th }}$ as much as present.
Q.22> Define Gravitational field. Mention its SI unit.
Q.23> What is gravitational potential? Mention its units and dimensions. Derive the value of gravitational potential at a distance r from a planet of mass m.

[^0]| Close | |
| :--- | :--- |
| gruess | CBSEGuess.com |

Q.24> Give 4 differences b / w gravitational and inertial mass.
Q. $25>$ What is a satellite? Define geostationary satellite. What are the conditions required for it?
Q.26> A satellite of mass " m " is revolving about a planet of mass " M " in an orbit of radius " r " . Derive the expression for orbital velocity, time period and height of satellite.
Q.27> State Kepler's laws of planetary motion. Derive the second and the third.
Q. $28>$ The time period of Jupiter is 11.6 years. How far is Jupiter from the sun? Distance b/w earth and sun is known to be $1.5 \times 10^{11} \mathrm{~m}$.
Q.29> what is escape velocity? Find the value of escape velocity from earth.
(b) Find the value of escape velocity from a planet whose mass if double while radius is 4 times that of earth
Q.30> Two particles of mass 5 kg and 10 kg are kept 100 m apart. Due to their mutual force of attraction they start approaching each other. Find the velocity of each of them when the separation b / w them has reduced to 25 m .
(b) At what location will they collide?

[^0]: CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers \| Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank |CBSE Guide |CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

