Based on: Mathematical Induction, Complex Numbers, Linear Inequalities

1. Find the multiplicative inverse of: 2-3i.
2. Solve: $|3-4 x| \geq 9$.
3. Find the least positive value of n, if $\left(\frac{1+i}{1-i}\right)^{n}=1$.
4. Express $\frac{3-4 \mathrm{i}}{(4-2 \mathrm{i})(1+\mathrm{i})}$ in the standard form.
5. What is the conjugate of $\frac{\sqrt{5+12 \mathrm{i}}+\sqrt{5-12 \mathrm{i}}}{\sqrt{5+12 \mathrm{i}}-\sqrt{5-12 \mathrm{i}}}$?
6. Show that " $2 n+1>2 n$ ", for all natural numbers $n \geq 3$.
7. The water acidity in a pool is considered normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35 , find the range of pH value for the third reading that will result in the acidity level being normal.
8. Using the principal of mathematical induction, prove that $10^{2 n-1}+1$ is divisible by 11 .
9. Solve the system of inequalities graphically: $x+2 y \leq 8,2 x+y \leq 8$.
10. Prove that $\sum_{t=1}^{n-1} t(t+1)=\frac{n(n-1)(n+1)}{3}$, for all natural numbers $n \geq 2$.
11. Express the complex number $\mathrm{z}=\frac{1-\mathrm{i}}{\cos 60^{\circ}+\mathrm{i} \sin 60^{\circ}}$ in polar form.
12. If $(x+i y)^{1 / 3}=u+i v$, where $x, y, u, v \in R$ then, show that: $\frac{x}{u}-\frac{y}{v}=-2\left[u^{2}+v^{2}\right]$.
(OR) Find the square root of complex number: $-15+8$ i.
13. Calculate mean, variation and standard deviation of the following frequency distribution:

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	11	29	18	4	5	3

