	[image: image1.png]cbseﬁguess

	http://www.cbseguess.com/

Guess Paper – 2010

Class – XII

Subject – Informatics Practices
PL/SQL
PL/SQL is a Procedural Language. It is a procedural extension of Oracle-SQL that offers language constructs similar to those in imperative programming languages. PL/SQL allows its users to develop complex database applications that require the usage of control structures and procedural elements such as procedures, function, modules etc

.

Limitations of SQL:

1. It doesn’t offers procedural capabilities.

2. No error handling procedures are supported by SQL.

3. Processing in SQL is Time-Consuming.

4. Network traffic is high in SQL.

5. SQL commands can’t be shared by multiple applications.

Advantages of PL/SQL over SQL:

1. It has procedural capabilities.

2. It supports error-handling procedures.

3. Processing in PL/SQL is less time consuming.

4. Use of PL/SQL reduces the network traffic.

5. PL/SQL promotes sharing of programs by multiple applications.

Block: PL/SQL block is a set of related procedural SQL statements, enclosed within the reserved words BEGIN and END. PL/SQL supports two types of blocks.

1. Anonymous Block: these are the block without header. They are not stored in the database.

2. Named Block: these are the block having headers or labels. They are stored in the database. Named blocks can be procedures, functions or triggers.
Reserved words: are the predefined words that are assigned some specific and special meaning. These words can’t be used as identifiers (variable, function name, procedure name etc.) in PL/SQL. E.g Declare, Begin, For, Loop, End, End Loop, End If, Then Etc.

Comment: comments are the non-executable statements in PL/SQL. These are used to increase the readability of the program. There are two types of comments supported by PL/SQL.

1. Single line comment: these comments start with the sign ‘- -‘

2. Multiple Line Comment: these comments start with /* and end with */.
Identifier: refers to the name of the object in PL/SQL. E.g Variable, Cursors, Procedures, Functions etc.

Delimiters: are the symbols that have special meaning in PL/SQL. E.g assignment operator(:=), concatenation operator(||), range(..), +, -, *, /, exponential(**) etc.

Datatypes specify the storage format and valid range of value for a variable. PL/SQL provides following datatypes:

1. Scalar type: it is atomic means it is not made up of other datatypes. e.g CHAR, VARCHAR2, NUMBER, DATE, BOOLEAN, LONG.

2. Composite type: it is made up of other datatypes. it has some internal components that can be manipulated individually. E.g. TABLE, RECORD.

3. Reference type: it holds values, called pointers that designate other program items.

Variable: is a named storage location in memory that is used to store the values that can be changed during the execution of the program. PL/SQL supports three types of variables.

1. Local Variable: these types of variables are declared in the DECLARE block of PL/SQL code.

2. Substitution Variable: these type of variables get automatically declared by prefixing ‘&’ sign to the variable. These variables are used to input the data at the run time.

3. Bind Variable: these types of variables can be declared in SQL prompt and can be used with PL/SQL code by prefix the ‘:’ sign.

Anchored Declaration: when a variable is declared with reference to another variable’s datatype known as anchored declaration. PL/SQL uses %TYPE & %ROWTYPE declaration attributes for this. E.g.

Num1 number(5);

Num2 Num1%type;
/*declare variable Num2 having same datatype as that of Num1. */

Esal emp.sal%type;
/* declare variable Esal with the datatype similar to sal column of EMP table*/

Literal: is a value, which is not represented by an identifier. It is simply a value. E.g 18, 201 etc.

Constant: is that variable whose value is assign at the time of declaration and doesn’t change during the time of execution. E.g. pi constant number := 3.14

Printing in PL/SQL Block: to print the output with in the same line statement: DBMS_OUTPUT.PUT(<string>).

To print the output in different line statement: DBMS_OUTPUT.PUT_LINE(<STRING>)

SET SERVEROUTPUT ON is an environment variable with two possible values ON or OFF. The output generated by the DBMS_OUTPUT package is visible only when SERVEROUTPUT variable is ON.

PL/SQL BLOCK DIGRAM:

DECLARE

/*this block is used for variable declaration, cursor/record definition */

BEGIN

/*this block is used to define the SQL-PL/SQL statements*/

EXCEPTION

/* all the exception handling statements written in this block */

END;

CONTROL CONSTRUCTS IN PL/SQL:

1. Sequence: means the statements are being executed sequentially. This is the default follow of statements.

Write a PL/SQL program to input two no’s and display the total and average of these no.

DECLARE

NO1 NUMBER;

--LOCAL VARIABLE

NO2 NUMBER;

TOT NUMBER;

PER NUMBER;

BEGIN

NO1 := &N1;

--&N1 substitution variable

NO2 := &N2;

--&N2 substitution variable

TOT := NO1 + NO2;

PER := TOT /2;

DBMS_OUTPUT.PUT_LINE(‘TOTAL ‘ || TOT);

DBMS_OUTPUT.PUT_LINE(‘AVERAGE ‘ || PER);

END;

Write a PL/SQL program to calculate the simple interest.

DECLARE

P NUMBER;

R NUMBER;

T NUMBER;

SI NUMBER;

BEGIN

P := &PRINCIPAL;

R := &RATE;

T := &TIME;

SI := (P * R * T)/100;

DBMS_OUTPUT.PUT_LINE(‘INTEREST ‘ || SI);

END;

2. Selection: means the execution of statements depending upon a condition test. If condition evaluates to true, set of statements is followed otherwise different set of statements is followed. This is also known as decision construct.

If..end if: this is the simplest form of the IF statement. If the condition between IF and THEN us true then the set of statements between the THEN and END IF gets executed otherwise not executed.

If <condition> then

.

.

end if;

Write a program to input the salary and working exp of emp and calculate the bonus as 10% of salary. Give 500 RS. Extra bonus to those whose working exp. More than 10 years.

DECLARE

SAL NUMBER;

BONUS NUMBER;

YEARS NUMBER;

BEGIN

SAL := &SALARY;

YEARS := &WORKING_YEARS;

BONUS := SAL * .1;

IF YEARS > 10 THEN

BONUS := BONUS + 500;

END IF;

DBMS_OUTPUT.PUT_LINE(‘BONUS: ‘ || BONUS);

END;

If..else..end if: in this construct If the condition between IF and THEN us true then the set of statements between the THEN and ELSE gets executed otherwise the set of statements between ELSE and END IF gets executed.

If <condition> then

.

else

.

end if;

Write a PL/SQL prog to input two no’s and print the maximum no between them.

DECLARE

N1 NUMBER;

N2 NUMBER;

BEGIN

N1 := &NO1;

N2 := &NO2;

IF N1 > N2 THEN

DBMS_OUTPUT.PUT_LINE(‘NO1 IS GREATER’);

ELSE

DBMS_OUTPUT.PUT_LINE(‘NO2 IS GREATER’);

END IF;

END;

Multiple IF: this is last and most complex form of IF statement. It executes the code following a <condition> that evaluates to TRUE. If no condition evaluates to true the code following ELSE gets executed.

If <condition> then

.

elsIf <condition> then

.

else

.

end if;
Write a PL/SQL program to input the Basic Salary and calculate the HRA, DA and Net Salary as per:

BASIC
HRA

DA

>15000
12%

8%

>12000
10%

6%

>9000

7%

4%

OTHERS
5%

200/-

DECLARE

BASIC NUMER

HRA NUMBER;

DA NUMBER;

NET NUMBER;

BEGIN

BASIC := &BASIC_SALARY;

IF BASIC > 15000 THEN

HRA := BASIC * .12;

DA := BASIC * .08;

ELSIF BASIC > 12000 THEN

HRA := BASIC * .1;

DA := BASIC * .06;

ELSIF BASIC > 9000 THEN

HRA := BASIC * ..07;

DA := BASIC * .04;

ELSE

HRA := BASIC * .05;

DA := BASIC * 200;

END IF;

NET := BASIC + HRA + DA;

DBMS_OUTPUT.PUT_LINE(‘BASIC: ‘ || BASIC);

DBMS_OUTPUT.PUT_LINE(‘HRA: ‘ || HRA);

DBMS_OUTPUT.PUT_LINE(‘DA: ‘ || DA);

DBMS_OUTPUT.PUT_LINE(‘NET: ‘ || NET);

END;

Nested Ifs: when IF statement can contain another IF inside it is called NESTED Ifs.

IF CONDITION THEN

.

IF CONDITION THEN

.

ELSE

.

IF CONDITION THEN

.

END IF;

.

END IF;

END IF;

Points to remember for using IF

· Always match up an IF with an END IF.

· Must put a space between the keywords END and IF.

· The ELSIF keyword does not have an embedded “E”.

· Place a semicolon (;) only after the END IF keyword.

3. Iteration: means repetition of a set of statements depending upon a condition test. Till the time a condition is true, set of statements are repeated again and again. As soon as the condition becomes false, the repetition stops. This is also known a looping.

Simple Loop: this loop begins with LOOP and End with END LOOP. This construct creates an infinite loop by default. In order to terminate this loop, we use the EXIT statement. Syntax:

LOOP

--STATEMENTS TO BE EXECUTED

END LOOP;
e.g write a program to input a no and print the table of that no.

declare

no number;

ctr number;

begin

no := &no;

ctr := 1;

loop

dbms_output.put_line(no * ctr);

ctr := ctr + 1;

exit when ctr > 10;

end loop;

end;

Numeric For Loop: this looping construct is used to repeat a set of instructions for a fixed no of times. Syntax

For ctr in [reverse] start .. end

Loop

--statements to be executed

end loop;

Write the code to print 1 to 10.

BEGIN

FOR I IN 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(I);

END LOOP;

END;

WRITE THE CODE TO PRINT 10 TO 1.

BEGIN

FOR I IN REVERSE 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(I);

END LOOP;

END;

Characteristics of numeric for loop:

· Loop Index is automatically declared

· Expressions in range scheme are evaluated once.

· Loop Index is not modifiable.
WHILE LOOP: this looping construct is used to repeat a set of statements till a condition holds true, as well as condition becomes false, loop terminate.

While <condition>

Loop

--statements to be executed

End loop
Write a program to display the sum of digits in no:

Declare

no number;

tot number := 0;

rem number;

begin

no := &no;

while no > 0

loop

rem := no mod 10;

tot := tot + rem;

no := no – rem;

no := no /10;

end loop;

dbms_output.put_line(tot);

end;

NESTED LOOP: when a loop exists inside another loop is called nested loop.

Loop

.

Loop

.

end loop;

end loop

WRITE A PL/SQL PROG TO PRINT THE TABLE BETWEEN NO’s 2 TO 10

BEGIN

FOR I IN 1..10 LOOP

FOR J IN 2..10 LOOP

DBMS_OUTPUT.PUT(I*J || ‘
 ‘);

END LOOP;

DBMS_OUTPUT.NEW_LINE;

END LOOP;

EXERCISE:

· Write a program to print the factorial of no.

· Program to find the sum in range of M to N.

· Program to find power like NP.

· Program to find the reverse of no.

· Program to check no is prime or not.

· Program to print febonacci series.

· Program to check no is Armstrong or not.

· Program to check no is palindrome or not.
· Program to input a no and print: n, n2 n3 n4 n5. if n is 2 then series is 2 4 8 16 32.
· Program to input two no and check whether no1 is divisible by no2 or not.
· Program to input 3 no’s and find out the maximum no.
· Program to input principal amount, time. If time more than 10 yrs, calculate the simple interest with 8% interest otherwise with 6%.
· Program to print first n odd numbers in descending order.

DATABASE INTERACTION IN PL/SQL
We can use any or the following SQL statements for SQL queries in PL/SQL code:

SELECT: for extracting data.

INSERT: for add new data.

UPDATE: for change in existing data.

DELETE: for remove existing data.

SELECT INTO STATEMENT: in SQL select statement is used to display the results on the screen. But in PL/SQL SELECT INTO statement is used to fetch the single record from the database and store it into another variables for further processing. Syntax:

SELECT <LIST> INTO <VARAIBLES> FROM <TABLE_NAME> [WHERE CONDITION];

Write the Code to input the emp’s no and print the name and salary of that emp.

DECLARE

ENO NUMBER;

EMP_NAME EMP.ENAME%TYPE;

SALARY EMP.SAL%TYPE;

BEGIN

ENO := &EMPNO;

SELECT ENAME, SAL INTO EMP_NAME, SALARY FROM EMP WHERE EMPNO=ENO;

DBMS_OUTPUT.PUT_LINE(EMP_NAME);

DBMS_OUTPUT.PUT_LINE(SALARY);

END;

Write the Code to input the dept’s no and print the total emp’s and sum of salary with in that dept.

DECLARE

DNO NUMBER;

TOTAL NUMBER

SUM_SAL NUMBER;

BEGIN

DNO := &DEPTNO;

SELECT COUNT(*), SUM(SAL) INTO TOTAL, SUM_SAL FROM EMP WHERE DPETNO = DNO;

DBMS_OUTPUT.PUT_LINE(TOTAL);

DBMS_OUTPUT.PUT_LINE(SUM_SAL);

END;

Write the PL/SQL code to input the emp’s no and increase the salary by 10% if his salary < 5000 otherwise delete the record.

DECLARE

ENO NUMBER;

SALARY NUMBER;

BEGIN

ENO := &EMPNO;

SELECT SALARY INTO SAL FROM EMP WHERE EMPNO = ENO;

IF SALARY < 5000 THEN

UPDATE EMP SET SAL = SAL + SAL *.1 WHERE EMPNO = ENO;

DBMS_OUTPUT.PUT_LINE(‘SALARY UPDATE’);

ELSE

DELETE FROM EMP WHERE EMPNO = ENO;

DBMS_OUTPUT.PUT_LINE(‘RECORD DELETED’);

END IF;

END;

Write PL/SQL code to insert the record in dept table.

DECLARE

DNO NUMBER;

DEPT_NAME DEPT.DNAME%TYPE;

DLOC DEPT.LOC%TYPE;

BEGIN

DNO := &DEPTNO;

DEPT_NAME := ‘&DNAME’;

DLOC := ‘&LOCATION’;

INSERT INTO DEPT VALUES(DNO, DEPT_NAME, DLOC);

DBMS_OUTPUT.PUT_LINE(‘RECORD INSERT’);

END;

Records: PL/SQL Record is a combination of fields. Records are used to represent complete row in a table. ‘Record is a group of multiple piece of information, related to one another, called fields’.

PL/SQL supports three types of records:

Table Based Record represents each field in the table. Fields in the record have the same name and datatype as the columns in the table have. Table Based Record is declared with an anchored declaration-using %ROWTYPE.

Write the PL/SQL code to display the ename and sal of emp whose empno is input by user, using table-based record.

DECLARE

RS EMP%ROWTYPE;

BEGIN

SELECT * INTO RS FROM EMP WHERE EMPNO=&ENO;

DBMS_OUTPUT.PUT_LINE(RS.ENAME ||RS.SAL);

END;

Programmer Defined Record is declared and defined explicitly by the programmer as per requirement. Firstly a RECORD type is defined and then variable of that RECORD type is declared.

Write the PL/SQL code to display the ename and sal of emp whose empno is input by user, using programmer-based record.

DECLARE

TYPE RS_EMP IS RECORD

(

EMP_NAME EMP.ENAME%TYPE,

EMP_SAL EMP.SAL%TYPE

);

RS RS_EMP;

BEGIN

SELECT ENAME, SAL INTO RS FROM EMP WHERE EMPNO=&ENO;

DBMS_OUTPUT.PUT_LINE(RS.EMP_NAME);

DBMS_OUTPUT.PUT_LINE(RS.EMP_SAL);

END;

Cursor Based Record is composite variable that represents each field in a cursor. The fields of record have same name and datatype as the fields of the cursor on which the record is based. It is declared using %ROWTYPE

Exception: are some undesired situations when PL/SQL program terminated unexpectedly.

EXCEPTION HANDLING is used to handle run-time errors. All the Exception Handling code is written in the EXCEPTION section of a PL/SQL program.

DECLARE

/*this block is used for variable declaration, cursor/record definition */

BEGIN

/*this block is used to define the SQL-PL/SQL statements*/
EXCEPTION

WHEN EXCEPTION_NAME THEN

--error handling code

WHEN EXCEPTION_NAME THEN

--error handling code

WHEN OTHERS THEN

--error handling code

END;

There are three types of exceptions. These are:

1. Predefined Exceptions: these are the common errors that have given predefined names, displayed on screen.

	Exception Name
	Description

	NO_DATA_FOUND
	When select statement doesn’t return any record

	TOO_MANY_ROWS
	When select statement return more than one record.

	ZERO_DIVIDE
	When any no is to be divide by zero.

	DUP_VAL_ON_INDEX
	Attempt to insert duplicate value.

	INVALID_CURSOR
	Illegal cursor operation occurred

Write PL/SQL script to input sal amt and display the Emp Name earning same sal amt. Use NO_DATA_FOUND and TOO_MANY ROWS Exception.

DECLARE

SALARY NUMBER;

E_NAME EMP.ENAME%TYPE;

BEGIN

SALARY := &SAL;

SELECT ENAME INTO E_NAME FROM EMP WHERE SAL=SALARY;

DBMS_OUTPUT.PUT_LINE(E_NAME) ;

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE(‘INVALID VALUE’);

WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE(‘return multiple value’);

END;

2. Undefined Exceptions: these are the less common errors that have not given predefined names. For these errors ORA – error code i.e., the system compilation error messages are displayed.

3. User-defined Exceptions: errors that do not cause a run-time error, but will violate business rules. Such errors are handled through programmer created custom error messages. User-defined Exception is raised with RAISE <EXCEPTION_NAME>.

Write PL/SQL script that traps ZERO_DIVIDE exception when a no is divided by other no. also raised user define exception if no2 greater than no1.

DECLARE

NO1 NUMBER;

NO2 NUMBER;

N2_GT_N1 EXCEPTION;
--user-defined exception

BEGIN

NO1 := &N1;

NO2 := &N2;

IF NO2 > NO1 THEN

RAISE N2_GT_N1;
--user-defined exception raised.

END IF;

DBMS_OUTPUT.PUT_LINE(NO1 / NO2);

EXCEPTION

WHEN ZERO_DIVIDE THEN

DBMS_OUTPUT.PUT_LINE(‘not divide by zero’);

WHEN N2_GT_N1 THEN

DBMS_OUTPUT.PUT_LINE(‘no2 greater than no1’);

END;

EXCRCISE:

· Program to input the deptno and print the dept name along with deptno based upon dept table.

· Write a PL/SQL block to print the highest paid and lowest paid employee from emp table.

· Write a PL/SQL block to delete all the rows of a particular department from the table emp where deptno is accepted from the user.

· Write PL/SQL code to calculate the commission based upon the sale input by user.

Sale Amt

Comm.

<10000

500 + 10%of sale

10000 – 20000
1000 + 15% of sale

> 20000

1500 + 20% of sale

Transaction: us a logical unit of work that is composed of one or more DML or DDL statements. A transaction must be either saved or rolled back.

COMMIT: when you manipulate the data all the DML operation affected in the temporary area and database remains unaffected from all these changes. If you want to store these changes to the database, you need to COMMIT the transaction.

ROLLBACK: means undoing any changes that have occurred in the current transaction. Oracle undoes some or all changes made by your session to the database in the current transaction.

SAVEPOINT: is used to mark a specific point in current transaction. SAVEPOINT gives a name to and mark a point in the processing of current transaction. It allows you to ROLLBACK TO that point.

CURSOR

CURSOR provides you a way to select multiple records from the database and process each record individually inside PL/SQL program. The set of rows returned by multi-query is called result set of active set. There are two types of cursors supported by PL/SQL.

1. Implicit Cursor
2. Explicit Cursor

	Implicit Cursor
	Explicit Cursor

	These cursors are maintained internally by PL/SQL. These are opened and closed automatically when the query is executed.
	These cursors are defined with a name and are opened and closed explicitly in a PL/SQL program.

	The cursor attributes are prefixed with SQL. (e.g. SQL%FOUND). Because SQL is default name of implicit cursor.
	The cursor attributes are prefixed with the cursor name. (e.g. cur%found) where cur is the name of explicit cursor.

	The cursor attribute %ISOPEN is always false. Because cursor gets closed automatically after the statement is over.
	The %ISOPEN attribute holds the value (TRUE/FALSE) of the status of the cursor.

	Only one row can be processed using the SELECT INTO statement.
	Any number of rows can be processed.

STEPS REQUIRED FOR EXPLICIT CURSOR:

1. Declare the cursor: in this process, select statement associated with cursor is defined. Syntax:

Cursor <cur_name> is select statement;

2. Open the cursor: in this process when cursor is opened the select statement associated with cursor is executed. Syntax:

Open <cur_name>[(parameter_list)];

3. Fetch rows from the cursor: in this step, one row is retrieved from the active set and stores it in variables for further processing. Syntax:

Fetch <cur_name> into <variable_list>;

4. Close the cursor: in this step the cursor is closed. The close statement disables the cursor. You can reopen it. Syntax:
close <cur_name>;

CURSOR ATTRIBUTES: cursor has four attributes:

1. %NOTFOUND Attribute: rows are fetched from the cursor’s active set one at a time. If the last fetch returned a row %NOTFOUND evaluates to FALSE. If the last fetch failed to return a row then %NOTFOUND evaluates to TRUE.

2. %FOUND Attribute: is logical opposite of %NOTFOUND. %FOUND evaluates to TRUE if the last fetch returned a row or FALSE if no row was returned.

3. %ROWCOUNT Attribute: when cursor is opened, %rowcount is zero. When the records are fetched from active set it is incremented by one each time. It returned how many records are fetched from the active set.

4. %ISOPEN Attribute: evaluates to TRUE if cursor is open, otherwise it evaluates to FALE.

Write the PL/SQL script to display the ename, job, sal and deptno from the emp table.

DECLARE

CURSOR CUR_EMP IS SELECT ENAME, JOB, SAL, DEPTNO FROM EMP;

RS CUR_EMP%ROWTYPE; --cursor-based record

BEGIN

OPEN CUR_EMP;

LOOP

FETCH CUR_EMP INTO RS;

EXIT WHEN CUR_EMP%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(RS.ENAME || ‘ ‘ || RS.SAL || ‘ ‘ RS.JOB || ‘ ‘|| RS.DEPTNO);

END LOOP;

CLOSE CUR_EMP;

END;

Write a PL/SQL script to increase the salary as per following criteria:

SALARY AMT

INCREMENTED BY

<1200

8%

<2500

12%

<4500

15%

OTHERWISE

20%

DECLARE

CURSOR CUR_EMP IS SELECT EMPNO, SAL FROM EMP;

RS CUR_EMP%ROWTYPE;

BEGIN

OPEN CUR_EMP;

LOOP

FETCH CUR_EMP INTO RS;

IF RS.SAL <1200 THEN

UPDATE EMP SET SAL = SAL *1.08 WHERE EMPNO=RS.EMPNO;

ELSIF RS.SAL <2500 THEN

UPDATE EMP SET SAL = SAL *1.12 WHERE EMPNO=RS.EMPNO;

ELSIF RS.SAL <4500 THEN

UPDATE EMP SET SAL = SAL *1.15 WHERE EMPNO=RS.EMPNO;

ELSE

UPDATE EMP SET SAL = SAL *1.2 WHERE EMPNO=RS.EMPNO;

END IF;

CLOSE CUR_EMP;

END;

Parameterized Cursors: a cursor can receive values provided by you, such cursors are known as Parameterized cursors.

Cursor cur_name (parameter datatype,…..) is select statement;

We can provide value for these parameters at the time of opening cursor as per following syntax:

Open cur_name(value, …);

Write the PL/SQL script to display the ename, job, sal of particular dept that is input by user using parameter.

DECLARE

CURSOR CUR_EMP(DNO NUMBER) IS SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = DNO;

RS CUR_EMP%ROWTYPE; --cursor based record

DEPT_NO NUMBER;

BEGIN

DEPT_NO := &DEPTNO;

OPEN CUR_EMP(DEPT_NO);

LOOP

FETCH CUR_EMP INTO RS;

EXIT WHEN CUR_EMP%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(RS.ENAME || ‘ ‘ || RS.SAL || ‘ ‘|| RS.JOB);

END LOOP;

CLOSE CUR_EMP;

END;

CURSOR FOR LOOP:

PL/SQL provides a special kind of FOR loop to process the rows returned in an explicit cursor. In a Cursor FOR Loop, a declared cursor is Opened, Fetched and Closed automatically when all of the rows have been processed. Syntax:

FOR <RECORD_INDEX> IN <CURSOR_NAME>

LOOP

--STATEMENTS TO BE EXECUTED

END LOOP;

Write a PL/SQL script to display the name, salary and bonus (salary * .12) for each emp using cursor for loop.

DECLARE

CURSOR CUR_EMP IS SELECT ENAME, SAL, SAL *1.2 ‘BONUS’ FROM EMP;

BEGIN

FOR RS IN CUR_EMP LOOP

DBMS_OUTPUT.PUT_LINE(RS.ENAME || ‘ ‘ || RS.SAL ||’ ‘ ||RS.BONUS) ;

END LOOP;

END;

CURSOR FOR LOOP USING USB-QUERY:

Writing a sub-query in place of cursor name in the cursor For Loop can do this. Syntax:

FOR <RECORD_NAME> IN <SUB-QUERY> LOOP

--STATEMENTS TO BE EXECUTED

END LOOP;

Write a PL/SQL script to display the name, salary for each emp using cursor for loop.

BEGIN

FOR RS IN (SELECT ENAME, SAL FROM EMP)

LOOP

DBMS_OUTPUT.PUT_LINE(RS.ENAME || ‘ ‘ || RS.SAL) ;

END LOOP;

END;

UNSLOVED EXERCISE:

· Write a PL/SQL script that uses cursor For Loop to calculate bonus for employees as 5%of salary + 2.5% of comm. The calculated bonus is store in a table bonuses(empno, bonus).

· PL/SQL script to increment the salaries of employees as per following specifications:

	Salesmen
	If salary + comm. > 2000 then 10% of salary otherwise 12% of salary

	Analysts
	20% of salary

	Clerks
	12% of salary

	Managers
	25% of salary

PROCEDURE

Procedure is a logical group of SQL and PL/SQL statements that performs a specific action.

Types of PL/SQL procedure:

	Local Procedure
	Stored Procedure

	It is not stored as an object in the oracle database
	Stored in the database as database object(in the compiled form).

	It can’t be called from inside of any other procedure or function.
	It can be called from inside of any other procedure or function.

	Compiled each time when program is to be executing
	Compiled only when it is created or modified.

	Can’t accept parameters.
	Can accept input parameters and pass values to output parameter

WHY PROCEDURES:

Advantages of PL/SQL procedures are:

· Procedures can be written to meet and server specific requirement.

· A bigger program can be broken into smaller and manageable units.

· Stored in compiled form, so that increases performance.

· Stored procedure increase reusability of code.

Block Structure of PL/SQL Procedure:

Header Section: here the type of block whether procedure or function, its name and parameters are specified.

Declaration Section: here all local variables to this block are specified.
Execution Section: here all the executable statements appear.

Exception Section: here all the exception statements specified.

Create or Replace procedure <prc_name> (parameter_name mode datatype)

As

--Declarations

Begin

--Statements to be executed

End;

Parameters to Procedures: parameters are the values passed into the procedures. It is of two types:

· Actual Parameter: is the list of parameter within procedure call statement.
Prc_name(value1, value2)

· Formal Parameters: are declared in a procedure specification in the procedure body.
Create or replace procedure prc_name (parameter mode datatype)

Parameter Modes:

	IN
	OUT
	IN OUT

	Default
	Must be specified
	Must be specified

	Passes values to the procedures.
	Returns values to the caller.
	Passes values to procedure and returns results to the caller.

	F. P. acts like a constant
	F. P. acts like an un-initialized variable.
	F. P. acts like an initialized variable.

	F. P. can’t be assigned a value.
	F. P. can’t be used in an expression; must be assigned a value.
	F. P. should be assigned a value.

	A. P. can be a variable, literal or expression.
	A. P. must be a variable.
	A. P. must be a variable.

* A.P. : ACTUAL PARAMETER;

* F. P. : FORMAL PARAMETER

Write a PL/SQL procedure called Multi_table that take two numbers as parameter and display the product of first number till second number;

CREATE OR REPLACE PROCEDURE MULTI_TABLE (N1 NUMBER, N2 NUMBER) AS

RES NUMBER := 1;

BEGIN

FOR I IN N1 ..N2 LOOP

RES := RES * I;

END LOOP;

DBMS_OUTPUT.PUT_LINE(RES);

END;

Write a PL/SQL procedure to return a value for finding the sum of first 10 natural number using OUT parameter.

CREATE OR REPLACE PROCEDURE MULTI_TABLE (TOTAL OUT NUMBER) AS

RES NUMBER := 1;

BEGIN

FOR I IN 1 .. 10 LOOP

RES := RES + I;

END LOOP;

TOTAL := RES;

END;

Write a PL/SQL procedure that take the deptno as parameter and display the name and salary of employees working in that dept and return the sum of sal of such employees using out parameter.

CREATE OR REPLACE PROCEDURE PRC_DISP(DNO NUMBER, sum_sal out number)

AS

CURSOR C_EMP IS SELECT ENAME, SAL FROM EMP WHERE DEPTNO=DNO;

RS C_EMP%ROWTYPE;

BEGIN

FOR RS IN C_EMP LOOP

DBMS_OUTPUT.PUT_LINE(RS.ENAME || ‘
‘ || RS,SAL);

END LOOP;

Select avg(sal) into sum_sal from emp where deptno=dno;

END;

Write a procedure raise_sal, which increases the salary of an employee. It accepts and emp’s no and salary increment amount.

CREATE OR REPLACE PROCEDURE RAISE_SAL(ENO NUMBER, AMT NUMBER) AS

BEGIN

UPDATE EMP SET SAL=SAL + AMT WHERE EMPNO = ENO;

END;

Write a PL/SQL procedure called Factorial that take an integer as parameter and return the factorial of related no.

CREATE OR REPLACE PROCEDURE FACTORIAL(N NUMBER, FACT OUT NUMBER)

AS

RES NUMBER := 1;

BEGIN

FOR I IN 1..N LOOP

RES := RES * I;

END LOOP;

FACT := RES;

END;

Create a procedure in PL/SQL that provides the details of customer name and city from table customer having structure(cid, cname, city, status, credit). To obtain these details customer number is passed to procedure.

CREATE OR REPLACE PROCEDURE PRC_DISP(CUST_ID NUMBER,

C_NAME OUT CUSTOMER.CNAME%TYPE,

C_CITY OUT CUSTOMER.CITY%TYPE)

AS

BEGIN

SELECT CNAME, CITY INTO C_NAME, C_CITY FROM CUTOMER WHERE CID=CUST_ID;

END;

Write a PL/SQL procedure that sal amount as in out parameter and return the sum of salary of employees getting more salary then input salary.

CREATE OR REPLACE PROCEDURE PRC_DISP(SALARY IN OUT NUMBER) AS

BEGIN

SELECT SUM(SAL) INTO SALARY FROM EMP WHERE SAL > SALARY;

END;

FUNCTION: is like a procedure that performs specific task. It receives arguments from the calling program. The difference is that it returns a single value to the calling program.

Create or replace function <fn_name> (<para_list>) return <return type>

As

Begin

--Body of loop

End;

Write a PL/SQL function power that takes two numbers as arguments and returns the value of the first number raised to the power of the second.

CREATE OR REPLACE FUNCTION POWER(N NUMBER, P NUMBER) RETURN NUMBER AS

RES NUMBER := 1;

BEGIN

FOR I IN 1..P

LOOP

RES := RES * N;

END LOOP;

RETURN RES;

END;

TRIGGERS

“A Trigger is a stored procedure that defines an action that the database automatically take when some database-related event such as Insert, Update or Delete occur.

Trigger Vs. Procedure: the difference between procedure and trigger is that procedure is executed explicitly and can accepts parameters. Instead of that trigger is executed implicitly whenever the triggering events occur and trigger doesn’t support arguments.

	TRIGGER
	PROCEDURES
	CURSORS

	These are named PL/SQL blocks.
	These are named PL/SQL blocks.
	These are named PL/SQL blocks.

	These are invoked automatically.
	User as per need invokes these.
	These can be created both explicitly and implicitly.

	These can’t take parameters.
	These can take parameters.
	These can take parameters.

	These are stored in database.
	These are stored in database.
	These are not stored in database.

Row Level Trigger vs. Statement Level Trigger:

	Row Level Trigger
	Statement Level Trigger

	These are fired for each row affected by the DML statement.
	These are fired once for the statement instead of the no of rows modified by it.

	These are used for generating/checking the values begin inserted or updated.
	These are used for generated the summary information.

	Before Triggers
	After Triggers

	Before triggers are fired before the DML statement is actually executed.
	After triggers are fired after the DML statement has finished execution.

SYNTAX:

Create or replace trigger <trg_name>

Before /After Insert/Update/Delete

[of column_name, column_name….]

on <table_name>

[for each row]

[when condition]

begin

---statement

end;

Paper Submitted by: Rohit Kukreja
Email : kukrejarohit@gmail.com

Ph No.: 9813080404

www.cbseguess.com
Other Educational Portals
www.icseguess.com | www.ignouguess.com | www.dulife.com | www.magicsense.com

[image: image1.png]