SECTION D

Question Numbers 29 to 34 carry 4 marks each.

29. Prove that the lengths of tangents drawn from an external point to a circle are equal.

Solution:

Let O be the centre of a circle.
Let PA and PB are two tangents drawn from a point P , lying outside the circle. Join OA, OB, and
OP . We have to prove that $\mathrm{PA}=\mathrm{PB}$.
In $\triangle \mathrm{OPA}$ and $\triangle \mathrm{OPB}$,
$\angle \mathrm{OAP}=\angle \mathrm{OBP} \quad\left(\right.$ Each equal to $\left.90^{\circ}\right)$
(Since we know that a tangent at any point of a circle is perpendicular to the radius through the point of contact and hence, $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$).
$\mathrm{OA}=\mathrm{OB} \quad$ (Radii of the circle)
$\mathrm{OP}=\mathrm{PO} \quad$ (Common side)
Therefore, by RHS congruency criterion,
$\Delta \mathrm{OPA} \cong \triangle \mathrm{OPB}$
\therefore By CPCT,
$\mathrm{PA}=\mathrm{PB}$
Thus, the lengths of the two tangents drawn from an external point to a circle are equal.
30. A motor boat whose speed is $20 \mathrm{~km} / \mathrm{h}$ is still water, takes 1 hour more to go 48 km upstream than to return downstream to the same spot. Find the speed of the stream.

Or

Find the roots of the equation $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$

Solution:

Let the speed of the stream be $x \mathrm{~km} / \mathrm{h}$

Speed of the boat while going upstream $=(20-x) \mathrm{km} / \mathrm{h}$
Speed of the boat while going downstream $=(20+x) \mathrm{km} / \mathrm{h}$
Time taken for the upstream journey $=\frac{48 \mathrm{~km}}{(20-x) \mathrm{km} / \mathrm{h}}=\frac{48}{20-x} \mathrm{~h}$
Time taken for downstream journey $=\frac{48 \mathrm{~km}}{(20+x) \mathrm{km} / \mathrm{h}}=\frac{48}{20+x} \mathrm{~h}$
It is given that,
Time taken for the upstream journey $=$ Time taken for the downstream journey +1 hour
$\Rightarrow \frac{48}{20-x}-\frac{48}{20+x}=1$
$\Rightarrow \frac{960+48 x-960+48 x}{(20-x)(20+x)}=1$
$\Rightarrow \frac{96 x}{400-x^{2}}=1$
$\Rightarrow 400-x^{2}=96 x$
$\Rightarrow x^{2}+96 x-400=0$
$\Rightarrow x^{2}+100 x-4 x-400=0$
$\Rightarrow x(x+100)-4(x+100)=0$
$\Rightarrow(x+100)(x-4)=0$
$\Rightarrow x+100=0$ or $x-4=0$
$\Rightarrow x=-100$ or $x=4$
$\therefore x=4$
[Since speed cannot be negative]
Thus, the speed of the stream is $4 \mathrm{~km} / \mathrm{h}$.
OR

$$
\begin{aligned}
& \frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30} \\
& \Rightarrow \frac{(x-7)-(x+4)}{(x+4)(x-7)}=\frac{11}{30} \\
& \Rightarrow \frac{-11}{x^{2}-3 x-28}=\frac{11}{30} \\
& \Rightarrow x^{2}-3 x-28=-30 \\
& \Rightarrow x^{2}-3 x+2=0 \\
& \Rightarrow x^{2}-2 x-x+2=0 \\
& \Rightarrow x(x-2)-1(x-2)=0 \\
& \Rightarrow(x-1)(x-2)=0 \\
& \Rightarrow x-1=0 \text { or } x-2=0 \\
& \Rightarrow x=1 \text { or } x=2
\end{aligned}
$$

Hence, the roots of the given equation are 1 and 2.
31. If the sum of first 4 terms of an AP is 40 and that of first 14 terms is 280 , find the sum of its first n terms.

Or

Find the sum of the first 30 positive integers divisible by 6 .

Solution:

Let a and d respectively be the first term and the common difference of the given A.P.
The sum of first four terms
$S_{4}=40$
$\Rightarrow \frac{4}{2}\{2 a+(4-1) d\}=40$
$\Rightarrow 2 a+3 d=20$

The sum of first 14 terms
$S_{14}=280$
$\Rightarrow \frac{14}{2}\{2 a+(14-1) d\}=280$
$\Rightarrow 2 a+13 d=40$

Subtracting equation (1) from equation (2),
$(2 a+13 d)-(2 a+3 d)=40-20$
$\Rightarrow 10 d=20$
$\Rightarrow d=2$
Substituting $d=2$ in equation (1),
$2 a+3 \times 2=20$
$\Rightarrow 2 a=20-6=14$
$\Rightarrow a=\frac{14}{2}=7$
\therefore Sum of first n terms, $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$
$=\frac{n}{2}\{2 \times 7+(n-1) \times 2\}$
$=\frac{n}{2}(14+2 n-2)$
$\equiv \frac{n}{2}(2 n+12)$
$=\frac{n}{2} \times 2(n+6)$
$=n(n+6)$
$=n^{2}+6 n$

OR

The first 30 integers divisible by 6 are $6,12,18 \ldots 180$.
Sum of first 30 integers
$=6+12+18+\ldots+180$
$=\frac{30}{2}(6+180) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=15 \times 186$
$=2790$
32. From a point on the ground, the angles of elevation of the bottom and top of a transmission tower fixed at the top of a 10 m high building are 30° and 60° respectively. Find the height of the tower.

Solution:

The given information can be represented diagrammatically as:

In the figure P is the point of observation. AB is the building of height 10 m and AC is the transmission tower.
In $\triangle \mathrm{ABP}, \frac{\mathrm{AB}}{\mathrm{BP}}=\tan 30^{\circ}$
$\Rightarrow \frac{10 \mathrm{~m}}{\mathrm{BP}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \mathrm{BP}=10 \sqrt{3} \mathrm{~m}$
In $\triangle \mathrm{CBP}, \frac{\mathrm{CB}}{\mathrm{BP}}=\tan 60^{\circ}$
$\Rightarrow \frac{\mathrm{AB}+\mathrm{AC}}{10 \sqrt{3} \mathrm{~m}}=\sqrt{3}$
$\Rightarrow 10 \mathrm{~m}+\mathrm{AC}=\sqrt{3} \times 10 \sqrt{3} \mathrm{~m}=30 \mathrm{~m}$
$\Rightarrow \mathrm{AC}=30 \mathrm{~m}-10 \mathrm{~m}=20 \mathrm{~m}$

Thus, the height of the transmission tower is 20 m .
33. Find the area of the shaded region in Fig. 6, where arcs drawn with centres A, B, C and D intersect in pairs at mid-points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively of a square ABCD , where the length of each side of square is 14 cm .
$\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$

Solution:

Length of each side of the square $=14 \mathrm{~cm}$
$\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are the mid-points of sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA , respectively.
\therefore Radius of each arc $=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
$\angle \mathrm{SAP}=\angle \mathrm{PBQ}=\angle \mathrm{QCR}=\angle \mathrm{RDS}=90^{\circ} \quad$ [Angle of square]
\therefore Area of sector $\mathrm{APS}=$ area of sector $\mathrm{PBQ}=$ area of sector $\mathrm{QCR}=$ area of sector SDR
Area of sector APS $=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(7 \mathrm{~cm})^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times \frac{22}{7} \times 49 \mathrm{~cm}^{2} \\
& =38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the non-shaded region $=4 \times$ area of sector APS $=4 \times 38.5 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Area of the square $=(\text { side })^{2}=(14 \mathrm{~cm})^{2}=196 \mathrm{~cm}^{2}$
Area of the shaded region $=$ area of the square - area of the non-shaded region

$$
=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}=42 \mathrm{~cm}^{2}
$$

Thus, the area of shaded region is $42 \mathrm{~cm}^{2}$.
34. A toy is in the shape of a solid cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 21 cm and 40 cm respectively, and the height of cone is 15 cm , then find the total surface area of the toy. [$\pi=3.14$, be taken]

Solution:

The given toy can be represented as,

Height of the cylindrical part $(E F)=21 \mathrm{~cm}$
Diameter of the cylindrical part $\left(\mathrm{CD}=h_{1}\right)=40 \mathrm{~cm}$
\therefore Radius of the cylindrical part $\left(r_{1}\right)=20 \mathrm{~cm}$
Height of the conical part $\left(\mathrm{PF}=h_{2}\right)=15 \mathrm{~cm}$
Radius of the conical part $\left(r_{2}\right)=r_{1}=20 \mathrm{~cm}$
$r_{1}=r_{2}=20 \mathrm{~cm}=r$ (say)
Total surface area of the toy
$=$ Curved surface area of the cylindrical part + Curved surface area of the conical part + area of the base of the cylindrical part

$$
\begin{aligned}
& =2 \pi r_{1} h_{1}+\pi r_{2} \sqrt{r_{2}^{2}+h_{2}^{2}}+\pi r_{1}^{2} \quad\left[l=\sqrt{r_{2}^{2}+h_{2}^{2}}\right] \\
& =2 \pi r h_{1}+\pi r \sqrt{r^{2}+h_{2}^{2}}+\pi r^{2} \\
& =\pi r\left(2 h_{1}+\sqrt{r^{2}+h_{2}^{2}}+r\right) \\
& =3.14 \times 20\left\{2 \times 21+\sqrt{(20)^{2}+(15)^{2}}+20\right\} \mathrm{cm}^{2} \\
& =62.8(42+\sqrt{625}+20) \mathrm{cm}^{2} \\
& =62.8(42+25+20) \mathrm{cm}^{2} \\
& =62.8 \times 87 \mathrm{~cm}^{2} \\
& =5463.6 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the total surface area of the toy is $5463.6 \mathrm{~cm}^{2}$.

