Chapter 10

CIRCLES

Points to Remember :

1. A circle is a collection of all the points in a plane, which are equidistant from a fixed point in the plane.
2. Equal chords of a circle (or of congruent circles) subtend equal angles at the centre.
3. If the angles subtended by two chords of a circle (or of congruent circles) at the centre (corresponding centre) are equal, the chords are equal.
4. The perpendicular from the centre of a circle to a chord bisects the chord.
5. The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
6. There is one and only one circle passing through three non-collinear points.
7. Equal chords of a circle (or of congruent circles) are equidistant from the centre (or corresponding centres).
8. Chords equidistant from the centre (or corresponding centres) of a circle (or of congruent circles) are equal.
9. If two arcs of a circle are congruent, then their corresponding chords are equal and conversely, if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.
10. Congruent arcs of a circle subtend equal angles at the centre.
11. The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
12. Angles in the same segment of a circle are equal.
13. Angle in a semicircle is a right angle.
14. If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.
15. The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.
16. If the sum of a pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic.

ILLUSTRATIVE EXAMPLES

Example 1. Give a method to find the centre of given circle.
Solution. Let A, B and C be any three distinct points on the given circle. Join A to B and B to C . Draw perpendicular bisectors PQ and RS of AB and BC respectively to meet at a point O.

Then, O is the centre of the circle.

Example 2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
-NCERT
Solution. Given : Two congruent circle $\mathrm{C}(\mathrm{O}, r)$ and $\mathrm{C}\left(\mathrm{O}^{\prime}, r\right)$ such that $\angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D}$.
To prove : $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$
Proof: In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{CO}^{\prime} \mathrm{D}$

Example 3. If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.
-NCERT
Solution. Given : Two circles, with centres O and O^{\prime} intersect at two points A and B so that AB is the common chord of the two circles and OO^{\prime} is the line segment joining the centres of the two circles.
Let OO^{\prime} intersect AB at M .
To prove : OO^{\prime} is the perpendicular bisector of AB .
Construction : Draw line segments $\mathrm{OA}, \mathrm{OB}, \mathrm{O}^{\prime} \mathrm{A}$ and $\mathrm{O}^{\prime} \mathrm{B}$.
Proof: In $\triangle \mathrm{OAO}^{\prime}$ and OBO^{\prime}, we have

$$
\begin{align*}
\mathrm{OA} & =\mathrm{OB} \\
\mathrm{O}^{\prime} \mathrm{A} & =\mathrm{O}^{\prime} \mathrm{B} \\
\mathrm{OO}^{\prime} & =\mathrm{OO}^{\prime} \tag{cpct}\\
\Rightarrow \quad \Delta \mathrm{OAO}^{\prime} & \cong \Delta \mathrm{OBO}^{\prime} \tag{1}\\
\Rightarrow \quad \angle \mathrm{AOO}^{\prime} & =\angle \mathrm{BOO}^{\prime} \\
\Rightarrow \quad \angle \mathrm{AOM} & =\angle \mathrm{BOM}
\end{align*}
$$

(Radii of same circle)

$$
\mathrm{O}^{\prime} \mathrm{A}=\mathrm{O}^{\prime} \mathrm{B} \quad \text { (Radii of same circle) }
$$

$$
\mathrm{OO}^{\prime}=\mathrm{OO}^{\prime} \quad(\text { Common side })
$$

(SSS congruence condition)

Now, In $\triangle \mathrm{AOM}$ and BOM , we have

OA	$=\mathrm{OB}$		(Radii of same circle)
	$\angle \mathrm{AOM}$	$=\angle \mathrm{BOM}$	
	OM	$=\mathrm{OM}$	(from (1))
$\Rightarrow \quad \triangle \mathrm{AOM}$	$\cong \triangle \mathrm{BOM}$		(common side)
$\Rightarrow \quad$	AM	$=\mathrm{BM}$ and $\angle \mathrm{AMO}=\angle \mathrm{BMO}$	
(SAS congruence condition)			
(cpct)			

But, $\angle \mathrm{AMO}+\angle \mathrm{BMO}=180^{\circ}$
$\therefore \quad 2 \angle \mathrm{AMO}=180^{\circ} \Rightarrow \angle \mathrm{AMO}=90^{\circ}$
Thus, $\quad \mathrm{AM}=\mathrm{BM}$ and $\angle \mathrm{AMO}=\angle \mathrm{BMO}=90^{\circ}$
Hence, OO^{\prime} is the perpendicular bisector of AB .
Example 4. Find the length of a chord which is at a distance of 8 cm from the centre of a circle of radius 17 cm .
Solution. Let AB be a chord of a circle with centre O and radius 17 cm .
Draw $O C \perp A B$. Join O to C.
Then, $O C=8 \mathrm{~cm} . O A=17 \mathrm{~cm}$
In right triangle OAC , using pythagoras theorem
$\mathrm{OA}^{2}=\mathrm{OC}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \quad 17^{2}=8^{2}+\mathrm{AC}^{2}$
$\Rightarrow \quad A C^{2}=17^{2}-8^{2}$
$\Rightarrow \quad \mathrm{AC}^{2}=225$
$\Rightarrow \quad \mathrm{AC}=15 \mathrm{~cm}$

Since, perpendicular from the centre of a circle to a chord bisects a chord, we have

$$
\begin{aligned}
\mathrm{AB} & =2 \mathrm{AC} \\
& =2 \times 15 \mathrm{~cm}=\mathbf{3 0} \mathbf{~ c m} \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{O}^{\prime} \mathrm{C} \quad(\text { each }=r) \\
& \mathrm{OB}=\mathrm{O}^{\prime} \mathrm{D} \quad(\text { each }=r) \\
& \angle \mathrm{AOB}=\angle \mathrm{CO}^{\prime} \mathrm{D} \quad \text { (given) } \\
& \text { (SAS congruence condition) } \\
& \text { (cpct) } \\
& \Rightarrow \quad \triangle \mathrm{AOB} \cong \angle \mathrm{CO}^{\prime} \mathrm{D} \quad \text { (SAS congruence condition) } \\
& \Rightarrow \quad \overline{\mathrm{AB}}=\overline{\mathrm{CD}} \quad \text { (cpct) }
\end{aligned}
$$

Example 5. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.
-NCERT
Solution. Clearly, the common chord AOB is the diameter of the cirlce with radius 3 cm .

\therefore Length of common chord AOB $=2 \times 3 \mathrm{~cm}=\mathbf{6} \mathbf{~ c m}$ Ans.
Example 6. AB and CD are two parallel chords of a circle which are on opposite sides of the centre such that $A B=10 \mathrm{~cm}, C D=24 \mathrm{~cm}$ and the distance between them is 17 cm . Find the radius of the circle.
Solution. Draw $\mathrm{ON} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{CD}$.
Since, $O N \perp A B, O M \perp C D$ and $A B \| C D$
$\Rightarrow \mathrm{M}, \mathrm{O}, \mathrm{N}$ are collinear points.
$\therefore \quad \mathrm{MN}=17 \mathrm{~cm}$
Let $\mathrm{ON}=\mathrm{xcm}$, then $\mathrm{OM}=(17-x) \mathrm{cm}$.
Now, we know that perpendicular from the centre of a circle to a chord bisects the chord,

$$
\begin{aligned}
& \mathrm{AN}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \times 10 \mathrm{~cm}=5 \mathrm{~cm}, \text { and } \\
& \mathrm{CM}=\frac{1}{2} \mathrm{CD}=\frac{1}{2} \times 24 \mathrm{~cm}=12 \mathrm{~cm}
\end{aligned}
$$

In $\triangle \mathrm{ONA}, \mathrm{OA}^{2}=\mathrm{ON}^{2}+\mathrm{AN}^{2}$
$\Rightarrow \quad r^{2}=x^{2}+(5)^{2}$
Again, In $\triangle \mathrm{OCN}, \mathrm{OC}^{2}=\mathrm{OM}^{2}+\mathrm{CM}^{2}$
$\Rightarrow \quad r^{2}=(17-x)^{2}+(12)^{2}$
from (1) and (2), we get

$$
\begin{aligned}
& x^{2}+(5)^{2}=(17-\mathrm{x})^{2}+(12)^{2} \\
\Rightarrow & x^{2}+25=289+x^{2}-34 x+144 \\
\Rightarrow & 34 x=408 \Rightarrow x=12
\end{aligned}
$$

Putting $x=12$ in (1),

$$
r^{2}=(12)^{2}+(5)^{2}=144+25=169
$$

$$
\Rightarrow \quad r=13
$$

Hence, radius of circle is $\mathbf{1 3} \mathbf{~ c m}$. Ans.
Example 7. In a circle of radius $5 \mathrm{~cm}, \mathrm{AB}$ and AC are two chords such that $\mathrm{AB}=\mathrm{AC}=6 \mathrm{~cm}$. Find the length of chord BC.
Solution. Given, $\mathrm{OA}=\mathrm{OC}=5 \mathrm{~cm}$
and $\mathrm{AB}=\mathrm{AC}=6 \mathrm{~cm}$
Since, points A and C are equidistant from A , so AO is the perpendicular bisector of BC .
$\therefore \angle \mathrm{ADB}=90^{\circ}$
Now, In right $\triangle \mathrm{ADC}$,

$$
\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}
$$

$\Rightarrow(6)^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
$\Rightarrow \mathrm{CD}^{2}=36-\mathrm{AD}^{2}$
Also, In $\triangle \mathrm{BDO}$,

$$
\begin{equation*}
\mathrm{OB}^{2}=\mathrm{BD}^{2}+\mathrm{OD}^{2} \tag{1}
\end{equation*}
$$

$\Rightarrow(5)^{2}=\mathrm{BD}^{2}+(\mathrm{AO}-\mathrm{AD})^{2}$
$\Rightarrow \quad 25=\mathrm{BD}^{2}+(5-\mathrm{AD})^{2}$
$\Rightarrow \mathrm{BD}^{2}=25-(5-\mathrm{AD})^{2}$
$\Rightarrow \mathrm{CD}^{2}=25-(5-\mathrm{AD})^{2} \quad(\because \mathrm{BD}=\mathrm{CD})$
from (1) and (2), we get,

$\Rightarrow \quad 36-\Delta D^{2}=25-25-\Delta D^{2}+10 \mathrm{AD}$
$\Rightarrow \mathrm{AD}=3.6 \mathrm{~cm}$
using in eq. (1),

$$
\begin{aligned}
\mathrm{CD}^{2} & =36-(3.6)^{2} \\
& =36-12.96 \\
& =23.04
\end{aligned}
$$

$\therefore \quad \mathrm{CD}=\sqrt{23.04}=4.8 \mathrm{~cm}$
$\therefore \quad B C=2 C D=2 \times 4.8 \mathrm{~cm}$

$$
=9.6 \mathrm{~cm} \text { Ans. }
$$

Example 8. Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre of the circle.
Solution. Given : M and N are the mid-points of two parallel chords AB and CD respectively of circle with centre O .
To prove: MON is a straight line.
Construction : Join OM, ON and draw OE $\|\mathrm{AB}\| \mathrm{CD}$.
Proof: Since, the line segment joining the centre of a circle to the mid point of a chord is perpendicular to the chord $\therefore \mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$
Now, $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{AB} \| \mathrm{OE} \quad \Rightarrow \mathrm{OM} \perp \mathrm{OE}$
$\Rightarrow \angle \mathrm{EOM}=90^{\circ}$
Also, $\mathrm{OM} \perp \mathrm{CD}$ and $\mathrm{CD} \| \mathrm{OE} \Rightarrow \mathrm{ON} \perp \mathrm{OE}$

$\therefore \quad \angle \mathrm{EOM}+\angle \mathrm{EON}=90^{\circ}+90^{\circ}=180^{\circ}$
Hence, MON is a straight line.
Example 9. In the given figure, there are two concentric circles with common centre $\mathrm{O} . l$ is a line intersecting these circles at A, B, C and D. Show that $A B=C D$.
Solution. Draw $\mathrm{OM} \perp l$.
We know that perpendicular from the centre of a circle to a chord bisects a chord.
Now, BC is a chord of smaller circle and $\mathrm{OM} \perp \mathrm{BC}$.
$\therefore \quad \mathrm{BM}=\mathrm{CM}$
Again, AD is a chord of bigger circle and $\mathrm{OM} \perp \mathrm{AD}$.
$\therefore \quad \mathrm{AM}=\mathrm{DM}$
Subtracting (1) from (2), we get $\mathrm{AM}-\mathrm{BM}=\mathrm{DM}-\mathrm{CM}$
$\Rightarrow \quad \mathrm{AB}=\mathrm{CD}$. Hence proved.

Example 10. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
—NCERT
Solution. Given : AB and CD are chords of a circle with centre O . AB and CD intersect at P and $\mathrm{AB}=\mathrm{CD}$. To prove : (i) $\mathrm{AP}=\mathrm{PD} \quad$ (ii) $\mathrm{PB}=\mathrm{CP}$
Construction: Draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$.
Join O to P.
Proof: $: A M=M B=\frac{1}{2} A B$
(\because perpendicular from centre bisects the chord)
also, $\quad \mathrm{CN}=\mathrm{ND}=\frac{1}{2} \mathrm{CD}$

(\because perpendicular from centre bisects the chord)
But $\quad \mathrm{AB}=\mathrm{CD} \Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD}$
$\Rightarrow \quad \mathrm{AM}=\mathrm{ND}$ and $\mathrm{MB}=\mathrm{CN}$
Now, in \triangle OMP and $\triangle \mathrm{ONP}$, we have

$$
\begin{align*}
\mathrm{OM} & =\mathrm{ON} & & \text { (equal chords of a circle are equidistant from the centre). } \tag{1}\\
\angle \mathrm{OMP} & =\angle \mathrm{ONP} & & \left(\text { (each }=90^{\circ}\right) \\
\Rightarrow \quad \mathrm{OP} & =\mathrm{OP} & & \text { (common side) } \\
\Rightarrow \quad \Delta \mathrm{OMP} & \cong \triangle \mathrm{ONP} & & \text { (RHS congruence condition) } \\
\Rightarrow \quad \mathrm{MP} & =\mathrm{PN} & & \ldots \text { (2) (cpct) }
\end{align*}
$$

Adding (1) and (2), we get

$$
\mathrm{AM}+\mathrm{MP}=\mathrm{ND}+\mathrm{PN} \Rightarrow \mathrm{AP}=\mathrm{PD}
$$

Subtracting (2) from (1), we get

$$
\mathrm{MB}-\mathrm{MP}=\mathrm{CN}-\mathrm{PN} \Rightarrow \mathrm{~PB}=\mathrm{CP}
$$

Hence proved.
Example 11. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.
-NCERT
Solution. Let ABC is an equilateral triangle of side $2 x$ metres.
Clearly, $\mathrm{BM}=\frac{\mathrm{BC}}{2}=\frac{2 x}{2}$ metres $=x$ metres
In right $\triangle \mathrm{ABM}, \mathrm{AM}^{2}=\mathrm{AB}^{2}-\mathrm{BM}^{2}$

$$
\begin{aligned}
& =(2 x)^{2}-(x)^{2}=4 x^{2}-x^{2}=3 x^{2} \\
\Rightarrow & \mathrm{AM}
\end{aligned}=\sqrt{3} x \mathrm{~m}
$$

Now, $\mathrm{OM}=\mathrm{AM}-\mathrm{OA}=(\sqrt{3} x-20)$ metres

In right $\triangle \mathrm{OBM}$, we have $\mathrm{OB}^{2}=\mathrm{BM}^{2}+\mathrm{OM}^{2}$
$\Rightarrow(20)^{2}=x^{2}+(\sqrt{3} x-20)^{2}$
$\Rightarrow 400=x^{2}+3 x^{2}+400-40 \sqrt{3} x$
$\Rightarrow 4 x^{2}-40 \sqrt{3} \quad x=0$
$\Rightarrow 4 x(x-10 \sqrt{3})=0$
$\Rightarrow \quad x=0$ or $x-10 \sqrt{3}=0$

But $x \neq 0 \quad \therefore x-10 \sqrt{3}=0 \Rightarrow x=10 \sqrt{3} \mathrm{~m}$
Now, $\mathrm{BC}=2 \mathrm{MB}=2 x=2 \times 10 \sqrt{3} \mathrm{~m}=20 \sqrt{3} \mathrm{~m}$
Hence, the length of each string $=20 \sqrt{\mathbf{3}} \mathbf{~ m}$ Ans.
Example 12. If O is the centre of the circle, find the value of x, in each of the following figures:

(i)

(ii)

(iii)

Solution. (i) $\angle \mathrm{BAC}=\angle \mathrm{BDC}=25^{\circ}$
Now, In $\triangle \mathrm{BCD}, \angle \mathrm{DBC}+\angle \mathrm{BDC}+x=180^{\circ}$
(\because angles in same segment are equal)
$\Rightarrow 75^{\circ}+25^{\circ}+x=180^{\circ}$
$\Rightarrow 100^{\circ}+x=180^{\circ} \Rightarrow x=180^{\circ}-100^{\circ}=\mathbf{8 0}^{\circ}$ Ans.
(ii) Since, $\mathrm{OB}=\mathrm{OA} \quad$ (radii of same circle)
$\therefore \quad \triangle \mathrm{OBA}$ is an isosceles triangle
$\therefore \quad \angle \mathrm{OBA}=\angle \mathrm{BAO}=25^{\circ}$
Similarly, $\triangle \mathrm{OAC}$ is an isosceles.
$\therefore \quad \angle \mathrm{OCA}=\angle \mathrm{OAC}=30^{\circ}$
adding (1) and (2), we get

$$
\begin{equation*}
\angle \mathrm{OAB}+\angle \mathrm{OAC}=25^{\circ}+30^{\circ} \tag{2}
\end{equation*}
$$

$\Rightarrow \quad \angle \mathrm{BAC}=55^{\circ}$
Now, $\angle \mathrm{BOC}=2 \angle \mathrm{BAC} \quad(\because$ The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle)
$\Rightarrow x=2 \times 55^{\circ}=\mathbf{1 1 0}^{\circ}$ Ans.
(iii) Reflex $\angle \mathrm{AOC}=360^{\circ}-120^{\circ}=240^{\circ}$

$$
\begin{aligned}
\therefore \quad \angle \mathrm{ABC} & =\frac{1}{2} \cdot \text { reflex AOC } \quad(\because \text { same as above }) \\
& =\frac{1}{2} \times 240^{\circ}=120^{\circ} \\
\Rightarrow \quad x & =\mathbf{1 2 0}^{\circ} \text { Ans. }
\end{aligned}
$$

Example 13. In the given figure, $A B$ is a diameter of a circle with centre O and chord $C D=$ radius $O C$. If $A C$ and $B D$ when produced meet at P, prove that $\angle \mathrm{APB}=60^{\circ}$.
Solution. Join O to D and B to C .
Now, $\mathrm{CD}=\mathrm{OC}=\mathrm{OD}$ (radii of same circle)
$\Rightarrow \quad \triangle O C D$ is equilateral
$\Rightarrow \angle \mathrm{COD}=60^{\circ}$
and $\angle \mathrm{CBD}=\frac{1}{2} \times \angle \mathrm{COD}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$(\because$ angle made by $\overparen{C D}$ at centre $=2 \times$ angle at any point on its remaining part).

Now, $\angle \mathrm{BCA}+\angle \mathrm{BCP}=180^{\circ} \quad(\because$ linear pair $)$
But, $\angle \mathrm{BCA}=90^{\circ} \quad(\because$ angle in semi-circle $)$
$\Rightarrow 90^{\circ}+\angle \mathrm{BCP}=180^{\circ} \Rightarrow \angle \mathrm{BCP}=90^{\circ}$
Now, in $\triangle \mathrm{BCP}, \angle \mathrm{BCP}+\angle \mathrm{CBP}+\angle \mathrm{CPB}=180^{\circ}$
$\Rightarrow 90^{\circ}+30^{\circ}+\angle C P B=180^{\circ}$
$\Rightarrow \angle \mathrm{CPB}=180^{\circ}-120^{\circ}=60^{\circ}$
$\Rightarrow \angle \mathrm{APB}=60^{\circ} \quad(\because \angle \mathrm{CPB}=\angle \mathrm{APB})$
Hence proved.
Example 14. In the following figures, if O is the centre of the circle, find x.

Solution.
(i) $\angle \mathrm{ACB}=90^{\circ} \quad(\because$ angle is a semi circle $)$ $\angle \mathrm{ACB}=180^{\circ}-135^{\circ} \quad(\because$ opposite angles of cyclic quadrilateral are supplementary $)$
Now, In $\triangle \mathrm{ABC}, \angle \mathrm{CAB}+\angle \mathrm{ACB}+\angle \mathrm{ABC}=180^{\circ} \quad(\because$ angle sum property $)$
$\Rightarrow x+90^{\circ}+45^{\circ}=180^{\circ} \Rightarrow x=\mathbf{4 5}^{\circ}$ Ans.
(ii) Take any point P on the major arc.

Now, $\angle \mathrm{APC}=\frac{1}{2} . \angle \mathrm{AOC}$
(\because The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle)
$=\frac{1}{2} \times 120^{\circ}=60^{\circ}$.
Also, $\angle \mathrm{APC}+\angle \mathrm{ABC}=180^{\circ} \quad(\because$ opp. angles of cyclic quadrilateral are supplementary $)$
$\Rightarrow 60^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}=180^{\circ}-60^{\circ}=120^{\circ}$
Now, $\angle \mathrm{ABC}+\angle \mathrm{DBC}=180^{\circ} \quad$ (\because linear pair)
$\Rightarrow 120^{\circ}+\angle \mathrm{DBC}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{DBC}=60^{\circ}$
$\Rightarrow \quad x=60^{\circ}$ Ans.
Example 15. Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.
Solution. Given : A cyclic quadrilateral ABCD in which $\mathrm{AP}, \mathrm{BP}, \mathrm{CR}$ and DR are the bisectors of $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$ respectively, forming a quadrilateral PQRS .
To prove : PQRS is a cyclic quadrilateral.

Proof: In $\triangle \mathrm{APB}, \angle \mathrm{APB}+\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}(\because$ angle sum property of a triangle $)$ Also, In $\triangle \mathrm{DRC}, \angle \mathrm{CRD}+\angle \mathrm{RCD}+\angle \mathrm{RDC}=180^{\circ} \quad(\because$ same as above $)$
$\Rightarrow \quad \angle \mathrm{APB}+\frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{~B}=180^{\circ}$
and

$$
\begin{equation*}
\angle \mathrm{CRD}+\frac{1}{2} \angle \mathrm{C}+\frac{1}{2} \angle \mathrm{D}=180^{\circ} \tag{1}
\end{equation*}
$$

Adding (1) and (2), we get

$$
\begin{array}{ll}
& \angle \mathrm{APB}+\angle \mathrm{CRD}+\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D})=360^{\circ} \\
\Rightarrow & \angle \mathrm{APB}+\angle \mathrm{CRD}+\frac{1}{2}\left(360^{\circ}\right)=360^{\circ} \quad\left(\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}\right) \\
\Rightarrow & \angle \mathrm{APB}+\angle \mathrm{CRD}=180^{\circ}
\end{array}
$$

Thus, two opposite angles of quadrilateral PQRS are supplementary.
\Rightarrow Quadrilateral PQRS is cyclic.
Example 16. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
-NCERT
Solution. Given : Diagonals AC and BD of a cyclic quadrilateral are diameter of the circle through the vertices A, B, C and D of the quadrilateral $A B C D$.
To prove : ABCD is a rectangle.
Proof : Since $A C$ is a diameter.
$\therefore \quad \angle \mathrm{ABC}=90^{\circ}\left(\because\right.$ angle in a semi-circles is $\left.90^{\circ}\right)$
also, quadrilateral ABCD is a cyclic.
$\therefore \quad \angle \mathrm{ADC}=180^{\circ}-\angle \mathrm{ABC}$
$\Rightarrow \quad \angle \mathrm{ADC}=180^{\circ}-90^{\circ}=90^{\circ}$
Similarly, $\angle \mathrm{BAC}=\angle \mathrm{BCD}=90^{\circ}$.
Now, each angle of a cyclic quadrilateral ABCD is 90°.

$\therefore \mathrm{ABCD}$ is a rectangle.
Example 17. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
-NCERT
Solution. Given : A trapezium $A B C D$ in which $A B \| D C$ and $A D=B C$.
To prove : ABCD is a cyclic trapezium.
Construction : Draw $\mathrm{DE} \perp \mathrm{AB}$ and $\mathrm{CF} \perp \mathrm{AB}$.
Proof: In order to prove that $A B C D$ is a cyclic trapezium, it is sufficient to prove that $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$.
Now, In \triangle DEA and $\triangle \mathrm{CFB}$, we have

$$
\begin{aligned}
& \mathrm{AD}=\mathrm{BC} \\
& \angle \mathrm{DEA}=\angle \mathrm{CFB} \\
& \mathrm{DE}=\mathrm{CF} \\
& \Rightarrow \quad \triangle \mathrm{DEA} \cong \triangle \mathrm{CFB} \\
& \Rightarrow \quad \angle \mathrm{~A}=\angle \mathrm{B} \text { and } \angle \mathrm{ADE}=\angle \mathrm{BCF} \quad \text { (cpct) } \\
& \text { Now, } \quad \angle \mathrm{ADE}=\angle \mathrm{BCF} \\
& \Rightarrow \quad 90^{\circ}+\angle \mathrm{ADE}=90^{\circ}+\angle \mathrm{BCF} \\
& \Rightarrow \angle \mathrm{EDC}+\angle \mathrm{ADE}=\angle \mathrm{FCD}+\angle \mathrm{BCF} \quad\left(\because \angle \mathrm{EDC}=90^{\circ}, \angle \mathrm{FCD}=90^{\circ}\right) \\
& \Rightarrow \quad \angle \mathrm{ADC}=\angle \mathrm{BCD} \\
& \Rightarrow \quad \angle \mathrm{D}=\angle \mathrm{C} \\
& \text { Thus, } \quad \angle \mathrm{A}=\angle \mathrm{B} \text { and } \angle \mathrm{C}=\angle \mathrm{D} \text {. }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Now, } & \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ} \\
\Rightarrow & 2 \angle \mathrm{~B}+2 \angle \mathrm{D}=360^{\circ} \\
\Rightarrow & \angle \mathrm{B}+\angle \mathrm{D}=\frac{360^{\circ}}{2}=180^{\circ}
\end{array}
$$

Hence, ABCD is a cyclic trapezium.
Example 18. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see figure). Prove that $\angle \mathrm{ACP}=\angle \mathrm{QCD}$.

Solution. Since angles in the same segment of a circle are equal.

\therefore	$\angle \mathrm{ACP}=\angle \mathrm{ABP}$
and	$\angle \mathrm{QCD}=\angle \mathrm{QBD}$

and $\quad \angle \mathrm{QCD}=\angle \mathrm{QBD}$
But, $\quad \angle \mathrm{ABP}=\angle \mathrm{QBD}$
(vertically opposite angles)
from (1), (2) and (3), we get

$$
\angle \mathrm{ACP}=\angle \mathrm{QCD}
$$

Example 19. Two circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
-NCERT
Solution. Given : Two circles are drawn with sides AB and AC of $\triangle \mathrm{ABC}$ as diameters. The circles intersect at D.
To prove: D lies on BC.
Construction : Join A to D.
Proof : Since $A B$ and $A C$ are diameters of the circles,
$\therefore \quad \angle \mathrm{ADB}=90^{\circ}$ and $\angle \mathrm{ADC}=90^{\circ}$
(\because angles in a semi-circle is 90°)
Adding, we get, $\angle \mathrm{ADB}+\angle \mathrm{ADC}=90^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \mathrm{BDC}$ is a straight line.
Hence, D lies on BC.
Example 20. ABC and ADC are two right triangles with common hypotenuse AC . Prove that $\angle \mathrm{CAD}=\angle \mathrm{CBD}$.
Solution. $\quad \triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$ are right angled triangles with common hypotenuse AC . Draw a circle with AC as diameter passing through B and D. Join B to D.
-NCERT

Clearly, $\angle \mathrm{CAD}=\angle \mathrm{CBD}$. Hence proved.
$(\because$ angles in the same segment are equal)
Example 21. Prove that a cyclic parallelogram is a rectangle.
Solution. Given : ABCD is parallelogram inscribed in a circle. To prove : ABCD is a rectangle.
Proof : Since $A B C D$ is a cyclic quadrilateral,
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
But, $\angle \mathrm{A}=\angle \mathrm{C}$
(opposite angles of a parallelogram are equal)

—NCERT
from (1) and (2), we get, $\angle \mathrm{A}+\angle \mathrm{A}=180^{\circ}$
$\Rightarrow \quad 2 \angle \mathrm{~A}=180^{\circ} \Rightarrow \angle \mathrm{A}=90^{\circ}$
i.e. $\quad \angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}$

Similarly, $\angle \mathrm{B}=\angle \mathrm{D}=90^{\circ}$
$\therefore \mathrm{ABCD}$ is a parallelogram whose each angle is equal to 90°.
$\Rightarrow A B C D$ is a rectangle.
Example 22. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
-NCERT
Solution. Given : ABCD is a rhombus. AC and BD are its two diagonals which bisect each other at right angles.
To prove : A circle drawn on AB as a diameter will pass through O .
Construction : From O, draw PQ \|AD and EF $\| A B$,
Proof: Since, $\mathrm{AB}=\mathrm{DC} \Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{DC}$

$$
\Rightarrow \mathrm{AQ}=\mathrm{DP}
$$

$(\because \mathrm{Q}$ and P are mid-points of AB and DC respectively)
Similarly, $\mathrm{AE}=\mathrm{OQ}$

$\Rightarrow \quad \mathrm{AQ}=\mathrm{OQ}=\mathrm{QB}$
\Rightarrow A circle drawn with Q as a centre and radius $A Q$ passes through A, O and B, which proves the desired result.
Example 23. ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E . Prove that $\mathrm{AE}=\mathrm{AD}$.
-NCERT

Solution. Since ABCE is a cyclic quadrilateral, $\angle \mathrm{AED}+\angle \mathrm{ABC}=180^{\circ}$
Now, CDE is a straight line.
$\Rightarrow \angle \mathrm{ADE}+\angle \mathrm{ADC}=180^{\circ}$
$(\because \angle \mathrm{ADC}$ and $\angle \mathrm{ABC}$ are opposite angles of a parallelogram i.e. $\angle \mathrm{ADC}=\angle \mathrm{ABC})$
From (1) and (2), we get

$$
\begin{aligned}
& \angle \mathrm{AED}+\angle \mathrm{ABC}=\angle \mathrm{ADE}+\angle \mathrm{ABC} \\
\Rightarrow & \angle \mathrm{AED}=\angle \mathrm{ADE} \\
\therefore & \mathrm{In} \triangle \mathrm{AED}, \angle \mathrm{AED}=\angle \mathrm{ADE} \\
\Rightarrow & \mathrm{AD}=\mathrm{AE}
\end{aligned}
$$

(sides opposite to equal angles are equal)
Hence proved.
Example 24. AC and BD are chords of a circle which bisect each other. Prove that :
(i) AC and BD are diameters
(ii) ABCD is a rectangle.

Solution. (i) Let AB and CD be two chords of a circle with center O .
Let they bisect each other at O .
Join AC, BD, AD and BC.

Now, In $\triangle \mathrm{AOC}$ and $\triangle \mathrm{BOD}$, we have

$$
\begin{align*}
\mathrm{OA} & =\mathrm{OB} & & (\because \mathrm{O} \text { is mid-point of } \mathrm{AB}) \\
\angle \mathrm{AOC} & =\angle \mathrm{BOD} & & \text { (vertically opp. angles) } \\
\mathrm{OC} & =\mathrm{OD} & & (\because \text { O is mid-point of } \mathrm{CD}) \\
\Rightarrow \quad \triangle \mathrm{AOC} & \cong \triangle \mathrm{BOD} & & (\mathrm{SAS} \text { congruence condition) } \\
\Rightarrow \quad \mathrm{AC} & =\mathrm{BD} & & \text { (cpct) } \\
\Rightarrow \quad \overparen{\mathrm{AO}} & =\overparen{\mathrm{BC}} & & \ldots(1) \tag{1}
\end{align*}
$$

Similarly, from $\triangle A O D$ and $\triangle B O C$, we have

$$
\begin{equation*}
\overparen{\mathrm{AO}}=\overparen{\mathrm{BC}} \tag{2}
\end{equation*}
$$

Adding (1) and (2), we get,

$$
\begin{aligned}
\overparen{\mathrm{AC}}+\overparen{\mathrm{AD}} & =\overparen{\mathrm{BD}}+\overparen{\mathrm{BC}} \\
\Rightarrow \quad \overparen{\mathrm{CAD}} & =\overparen{\mathrm{CBD}}
\end{aligned}
$$

$\Rightarrow \quad \mathrm{CD}$ divides the circle into two equal parts
$\Rightarrow \quad \mathrm{CD}$ is a diameter.
Similarly, AB is a diameter.
(i) Since, $\triangle \mathrm{AOC} \cong \triangle \mathrm{BOD} \quad$ (proved above)
$\Rightarrow \quad \angle$ OAC i.e. $\angle \mathrm{BAC}=\mathrm{OBD}$ i.e. $\angle \mathrm{ABD}$
$\Rightarrow \quad \mathrm{AC} \| \mathrm{BD}$.
Again, $\triangle \mathrm{AOD} \cong \triangle \mathrm{COB} \quad$ (proved above)
$\Rightarrow \quad \mathrm{AD} \| \mathrm{CB}$
$\Rightarrow \mathrm{ABCD}$ is a cyclic parallelogram.
$\Rightarrow \quad \angle \mathrm{DAC}=\angle \mathrm{DBA}$
...(3) (\because opp. angles of a parallelogram)
also, ABCD is a cyclic quadrilateral,
$\therefore \quad \angle \mathrm{DAC}+\angle \mathrm{DBA}=180^{\circ}$
from (3) and (4), we get
$\angle \mathrm{DAC}=\angle \mathrm{DBA}=\frac{180^{\circ}}{2}=90^{\circ}$
Hence, ABCD is a rectangle.
Example 25. Bisectors of angles A, B and C of a triangle ABC intersect the circumcircle at D, E and F respectively. Prove that the angles of the $\triangle \mathrm{DEF}$ are $90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \angle \mathrm{~B}$ and $90^{\circ}-\frac{1}{2} \angle \mathrm{C}$. -NCERT
Solution. We have, $\angle \mathrm{D}=\angle \mathrm{EDF}=\angle \mathrm{EDA}+\angle \mathrm{ADF}$

$$
=\angle \mathrm{EBA}+\angle \mathrm{FCA}
$$

($\because \angle \mathrm{EDA}$ and $\angle \mathrm{EBA}$ are in the same segment are in the same segment of a circle)
$\therefore \quad \angle \mathrm{EDA}=\angle \mathrm{EBA}$.
Similarly, $\angle \mathrm{ADF}$ and $\angle \mathrm{FCA}$ are the angles in the same segment,
$\therefore \angle \mathrm{ADF}=\angle \mathrm{FCA}$

$$
\begin{aligned}
& =\frac{1}{2} \angle \mathrm{~B}+\frac{1}{2} \angle \mathrm{C}=\frac{1}{2}(\angle \mathrm{~B}+\angle \mathrm{C}) \\
& =\frac{1}{2}\left(180^{\circ}-\angle \mathrm{A}\right) \quad\left[\because \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right]
\end{aligned}
$$

$$
=90^{\circ}-\frac{1}{2} \angle \mathrm{~A}
$$

Similarly, other two angles of $\triangle \mathrm{DEF}$ are

$$
90^{\circ}-\frac{1}{2} \angle \mathrm{~B} \text { and } 90^{\circ}-\frac{1}{2} \angle \mathrm{C} \text {. }
$$

Hence proved.

PRACTICE EXERCISE

1. Show how to complete a circle if an arc of the circle is given.
2. The radius of a circle is 13 cm and the length of one of its chord is 10 cm . Find the distance of the chord from the centre.
3. AB and CD are two parallel chords of a circle which are on the opposite sides of the centre such that $\mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{CD}=6 \mathrm{~cm}$. Also, radius of circle is 5 cm . Find the distance between the two chords.
4. Two chords AB and AC of a circle are equal. Prove that the centre of the circle lies on the angle bisector of $\angle \mathrm{BAC}$.
5. If two circles intersect in two points, prove that the line through their centres is the perpendicular bisector of the common chord.
6. If a diameter of a circle bisects each of the two chords of the circle, prove that the chords are parallel.
7. In the given figure, two equal chords AB and CD of a circle with centre O , when produced meet at a point P. Prove that $(i) \mathrm{BP}=\mathrm{DP}(i i) \mathrm{AP}=\mathrm{CP}$.

8. Two circles whose centres are O and O^{\prime} intersects at P . Through P , a line l parallel to OO^{\prime}, intersecting the circles at C and D , is drawn. Prove that $\mathrm{CD}=2 . \mathrm{OO}^{\prime}$.
9. In the given figure, O is the centre of the circle and $M O$ bisects $\angle A M C$. Prove that $A B=C D$.

10. Show that if two chords of a circle bisect each other, they must be the diameters of the circle.
11. In the given figure, OD is perpendicular to the chord AB of a circle with centre O . If BC is a diameter, show that $\mathrm{AC} \| \mathrm{OD}$ and $\mathrm{AC}=2 \mathrm{OD}$.

12. Prove that two different circles cannot intersect each other at more than two points.
13. Two equal circles intersect in P and Q . A straight line through P meets the circle in X and Y . Prove that $\mathrm{QX}=\mathrm{QY}$.

14. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.
15. AB and AC are two equal chords of a circle whose centre is O . If $\mathrm{OD} \perp \mathrm{AB}$ and $\mathrm{OE} \perp \mathrm{AC}$, prove that $\triangle \mathrm{ADE}$ is an isosceles triangle.
16. Prove that angle is a semi-circle is a right angle.
17. Prove that the angles in the same segment of a circle are equal.
18. Prove that the angle formed by a chord in the major segment is acute.
19. Prove that the angle formed by a chord in the minor segment is obtuse.
20. If O is the centre of a circle, find the value of x in the following figures:

(i)

(iv)

(ii)

(v)

(iii)

(vi)
21. In the given figure, two circles intersect at P and $Q . P R$ and $P S$ are respectively the diameters of the circle. Prove that the points R, Q, S are collinear.

22. Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter, bisects the third side of the triangle.
23. In the given figure, O is the centre of the circle. Prove that $\angle a+\angle b=\angle c$.

24. In an isosceles triangle $A B C$ with $A B=A C$, a circle passing through B and C intersects the sides $A B$ and AC at D and E respectively. Prove that $\mathrm{DE} \| \mathrm{BC}$.

25. In the given figure, PQ is a diameter of a circle with center O . If $\angle \mathrm{PQR}=65^{\circ}, \angle \mathrm{SPR}=35^{\circ}$ and $\angle \mathrm{PQT}=50^{\circ}$, find:
(i) $\angle \mathrm{QPR}$
(ii) $\angle \mathrm{QPT}$
(iii) $\angle \mathrm{PRS}$

26. In the given figure $\triangle \mathrm{ABC}$ is isosceles with $\mathrm{AB}=\mathrm{AC}$ and $\angle \mathrm{ABC}=55^{\circ}$. Find $\angle \mathrm{BDC}$ and $\angle \mathrm{BEC}$.

27. Find the angles marked with a letter. O is the centre of the circle.

(i)

(ii)

(iv)

(v)

(iii)

(vi)
28. In the following figure, find x and y.

29. Prove that every cyclic parallelogram is a rectangle.
30. If two non-parallel sides of a trapezium are equal, prove that it is cyclic.
31. Prove that cyclic trapezium is always isosceles and its diagonals are equal.
32. In an isosceles $\triangle A B C$ with $A B=A C$, a circle passing through B and C intersects the sides $A B$ and $A C$ at D and E respectively. Prove that $D E \| B C$.
33. In the given figure, $A B C D$ is a parallelogram. A circle through A, B, C intersects $C D$ produced at E. Prove that $\mathrm{AD}=\mathrm{AE}$.

34. The bisectors of the opposite angles A and C of a cyclic quadrilateral ABCD intersect the circle at the points E and F respectively. Prove that $E F$ is a diameter of the circle.

35. Prove that the angle bisectors of the angles formed by producing opposite sides of a cyclic quadrilateral (provided the are not parallel) intersect at a right angle.

General Instructions :

MM: 30
Q. 1-4 carry 2 marks, Q. 5-8 carry 3 marks and Q. 9-10 carry 5 marks each.

1. In the given figure, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four points on the circle. AC and BD intersect at a point E such that $\angle \mathrm{BEC}=120^{\circ}$, and $\angle \mathrm{ECD}=20^{\circ}$. Find $\angle \mathrm{BAC}$.

2. Prove that the line joining the mid-points of the two parallel chords of a circle passes through the centre of the circle.
3. Find the value of x and y :

4. If O is the centre of the circle, find the value of x.

5. If two intersecting circles have a common chord of length 16 cm , and if the radii of two circles are 10 cm and 17 cm , find the distance between their centres.
6. If two non-parallel sides of a trapezium are equal, prove that it is cyclic.
7. In the given figure, AB is a chord of a circle with centre O and AB is produced to C such that $\mathrm{BC}=\mathrm{OB}$. Also, CO is joined and produced to meet the circle in D . If $\angle \mathrm{ACD}=b^{\circ}$ and $\angle \mathrm{AOD}=a^{\circ}$, prove that $a=3 b^{\circ}$ 。

8. In the given figure, ABCD is a cyclic quadrilateral. A circle passing through A and B meets AD and BC in E and F respectively. Prove that $E F \| D C$.

9. Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateal is also cyclic.
10. The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle. Prove it.
11. In the given figure, ABCD is a cyclic quadrilateral. A circle passing through A and B meets AD and BC in E and F respectively. Prove that $E F \| D C$.

12. Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateal is also cyclic.
13. The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle. Prove it.

ANSWERS OF PRACTICE EXERCISE

2. 12 cm
3. 7 cm
4. 6 cm
5. (i) 100°
(ii) 50°
(iii) 55°
(iv) 35°
(v) 30°
(vi) 50°
6. (i) 15°
(ii) 40°
(iii) 40°
7. (i) 70°
(ii) 110°
8. (i) $a=50^{\circ}$
(iv) $a=45^{\circ}, b=64^{\circ}, c=58^{\circ}$
(ii) $b=40^{\circ}$
(iii) $\mathrm{c}=35^{\circ}$
(v) $x=40^{\circ}, y=32^{\circ}, z=40^{\circ}$
(vi) $a=41^{\circ}, b=41^{\circ}, c=41^{\circ}$
9. $x=40^{\circ}, y=25^{\circ}$

ANSWERS OF PRACTICE TEST

1. 100°
2. $x=75^{\circ}, y=105^{\circ}$
4.55°
3. 21 cm
