CHAPTER 10

CIRCLES

Points to Remember :

- 1. A circle is a collection of all the points in a plane, which are equidistant from a fixed point in the plane.
- 2. Equal chords of a circle (or of congruent circles) subtend equal angles at the centre.
- 3. If the angles subtended by two chords of a circle (or of congruent circles) at the centre (corresponding centre) are equal, the chords are equal.
- 4. The perpendicular from the centre of a circle to a chord bisects the chord.
- 5. The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
- 6. There is one and only one circle passing through three non-collinear points.
- 7. Equal chords of a circle (or of congruent circles) are equidistant from the centre (or corresponding centres).
- 8. Chords equidistant from the centre (or corresponding centres) of a circle (or of congruent circles) are equal.
- 9. If two arcs of a circle are congruent, then their corresponding chords are equal and conversely, if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.
- 10. Congruent arcs of a circle subtend equal angles at the centre.
- 11. The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
- 12. Angles in the same segment of a circle are equal.
- 13. Angle in a semicircle is a right angle.
- 14. If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.
- 15. The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.
- 16. If the sum of a pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic.

ILLUSTRATIVE EXAMPLES

Example 1. Give a method to find the centre of given circle.

Solution. Let A, B and C be any three distinct points on the given circle. Join A to B and B to C. Draw perpendicular bisectors PQ and RS of AB and BC respectively to meet at a point O.

Then, O is the centre of the circle.

MATHEMATICS-IX

CIRCLES

- Example 5. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord. —NCERT
- Solution. Clearly, the common chord AOB is the diameter of the cirlce with radius 3 cm.

 $(6)^2 = AD^2 + CD^2$ \Rightarrow \Rightarrow CD² = 36 - AD² ...(1) Also, In \triangle BDO, $OB^2 = BD^2 + OD^2$ \Rightarrow $(5)^2 = BD^2 + (AO - AD)^2$ \Rightarrow $25 = BD^2 + (5 - AD)^2$ \Rightarrow BD² = 25 - (5 - AD)² \Rightarrow CD² = 25 - (5 - AD)² (:: BD = CD)...(2) from (1) and (2), we get, $36 - AD^2 = 25 - (5 - AD)^2$ \Rightarrow 36-AD²=25-25-AD²+10AD \Rightarrow AD = 3.6 cm using in eq. (1), $CD^2 = 36 - (3.6)^2$ = 36 - 12.96= 23.04 \therefore CD = $\sqrt{23.04}$ = 4.8 cm *:*.. $BC = 2CD = 2 \times 4.8 \text{ cm}$ = 9.6 cm Ans. Example 8. Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre of the circle. Solution. Given : M and N are the mid-points of two parallel chords AB and CD respectively of circle with centre O. To prove : MON is a straight line. Construction : Join OM, ON and draw OE || AB || CD. N Proof: Since, the line segment joining the centre of a circle to the D mid point of a chord is perpendicular to the chord \therefore OM \perp AB and ON \perp CD E \cap Now, OM \perp AB and AB \parallel OE \Rightarrow OM \perp OE $\Rightarrow \angle EOM = 90^{\circ}$ Μ Also, $OM \perp CD$ and $CD \parallel OE \implies ON \perp OE$ $\Rightarrow \angle EON = 90^{\circ}$ $\therefore \quad \angle EOM + \angle EON = 90^\circ + 90^\circ = 180^\circ$ Hence, MON is a straight line. Example 9. In the given figure, there are two concentric circles with common centre O. *l* is a line intersecting these circles at A, B, C and D. Show that AB = CD. Solution. Draw OM $\perp l$. We know that perpendicular from the centre of a circle to a chord bisects a chord. Now, BC is a chord of smaller circle and ۰O $OM \perp BC.$ \therefore BM = CM ...(1) В Μ D A Again, AD is a chord of bigger circle and OM \perp AD. AM = DM...(2) *.*. Subtracting (1) from (2), we get AM - BM = DM - CMAB = CD. Hence proved. \Rightarrow CIRCLES MATHEMATICS-IX 116

- Example 10. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord. —NCERT
- **Solution.** Given : AB and CD are chords of a circle with centre O. AB and CD intersect at P and AB = CD. To prove : (i) AP = PD (ii) PB = CP

Construction : Draw OM \perp AB and ON \perp CD. Join O to P.

Proof:
$$AM = MB = \frac{1}{2}AB$$

(:: perpendicular from centre bisects the chord)

also, $CN = ND = \frac{1}{2}CD$

(\because perpendicular from centre bisects the chord)

But
$$AB = CD \Rightarrow \frac{1}{2} AB = \frac{1}{2} CD$$

 $\Rightarrow AM = ND and MB = CN$...(1)
Now, in ΔOMP and ΔONP , we have
 $OM = ON$ (equal chords of a circle are equidistant from the centre).
 $\angle OMP = \angle ONP$ (each = 90°)
 $OP = OP$ (common side)
 $\Rightarrow \Delta OMP \cong \Delta ONP$ (RHS congruence condition)
 $\Rightarrow MP = PN$...(2) (cpct)
Adding (1) and (2), we get
 $AM + MP = ND + PN \Rightarrow AP = PD$
Subtracting (2) from (1), we get
 $MB - MP = CN - PN \Rightarrow PB = CP$
Hence proved.

- Example 11. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

 —NCERT
- **Solution.** Let ABC is an equilateral triangle of side 2x metres.

Clearly, BM =
$$\frac{BC}{2} = \frac{2x}{2}$$
 metres = x metres
In right $\triangle ABM$, AM² = AB² - BM²
= $(2x)^2 - (x)^2 = 4x^2 - x^2 = 3x^2$
 $\Rightarrow AM = \sqrt{3}x$ m
Now, OM = AM - OA = $(\sqrt{3}x - 20)$ metres
In right $\triangle OBM$, we have OB² = BM² + OM²
 $\Rightarrow (20)^2 = x^2 + (\sqrt{3}x - 20)^2$
 $\Rightarrow 400 = x^2 + 3x^2 + 400 - 40\sqrt{3} x$
 $\Rightarrow 4x^2 - 40\sqrt{3} x = 0$
 $\Rightarrow 4x(x - 10\sqrt{3}) = 0$

$$\Rightarrow x = 0 \text{ or } x - 10\sqrt{3} = 0$$

MATHEMATICS-IX

CIRCLES

D

 \mathbf{R}

But $x \neq 0$ \therefore $x - 10\sqrt{3} = 0 \implies x = 10\sqrt{3}$ m Now, BC = 2 MB = $2x = 2 \times 10 \sqrt{3}$ m = $20 \sqrt{3}$ m

Hence, the length of each string = $20\sqrt{3}$ m Ans.

Example 12. If O is the centre of the circle, find the value of x, in each of the following figures:

Now, $\angle BCA + \angle BCP = 180^{\circ}$ (\because linear pair) But, $\angle BCA = 90^{\circ}$ (\because angle in semi-circle) $\Rightarrow 90^{\circ} + \angle BCP = 180^{\circ} \Rightarrow \angle BCP = 90^{\circ}$ Now, in $\triangle BCP$, $\angle BCP + \angle CBP + \angle CPB = 180^{\circ}$ $\Rightarrow 90^{\circ} + 30^{\circ} + \angle CPB = 180^{\circ}$ $\Rightarrow \angle CPB = 180^{\circ} - 120^{\circ} = 60^{\circ}$ $\Rightarrow \angle APB = 60^{\circ}$ ($\because \angle CPB = \angle APB$) Hence proved.

Example 14. In the following figures, if O is the centre of the circle, find x.

Solution. (i)
$$\angle ACB = 90^{\circ}$$
 (\because angle is a semi circle)
 $\angle ACB = 180^{\circ} - 135^{\circ}$ (\because opposite angles of cyclic quadrilateral are supplementary)
Now, In $\triangle ABC$, $\angle CAB + \angle ACB + \angle ABC = 180^{\circ}$ (\because angle sum property)
 $\Rightarrow x + 90^{\circ} + 45^{\circ} = 180^{\circ} \Rightarrow x = 45^{\circ}$ Ans.
(*ii*) Take any point P on the major arc.
Now, $\angle APC = \frac{1}{2}$. $\angle AOC$

(: The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle)

$$=\frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

Also, $\angle APC + \angle ABC = 180^{\circ}$ (\because opp. angles of cyclic quadrilateral are supplementary) $\Rightarrow 60^{\circ} + \angle ABC = 180^{\circ}$ $\Rightarrow \angle ABC = 180^{\circ} - 60^{\circ} = 120^{\circ}$ Now, $\angle ABC + \angle DBC = 180^{\circ}$ (\because linear pair)

$$\Rightarrow 120^\circ + \angle DBC = 180^\circ$$

$$\Rightarrow \angle DBC = 60^{\circ}$$

 $\Rightarrow x = 60^{\circ}$ Ans.

Example 15. Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic. **Solution.** Given : A cyclic quadrilateral ABCD in which AP, BP, CR and DR are the bisectors of $\angle A$, $\angle B$, $\angle C$

and $\angle D$ respectively, forming a quadrilateral PQRS. To prove : PQRS is a cyclic quadrilateral.

MATHEMATICS-IX

CIRCLES

Proof: In $\triangle APB$, $\angle APB + \angle PAB + \angle PBA = 180^{\circ}$ (\because angle sum property of a triangle) Also, In $\triangle DRC$, $\angle CRD + \angle RCD + \angle RDC = 180^{\circ}$ (\because same as above)

$$\Rightarrow \qquad \angle APB + \frac{1}{2} \angle A + \frac{1}{2} \angle B = 180^{\circ} \qquad \dots (1)$$

and

$$\angle CRD + \frac{1}{2} \angle C + \frac{1}{2} \angle D = 180^{\circ}$$
 ...(2)

Adding (1) and (2), we get

$$\angle APB + \angle CRD + \frac{1}{2}(\angle A + \angle B + \angle C + \angle D) = 360^{\circ}$$

 \Rightarrow

$$\angle APB + \angle CRD + \frac{1}{2}(360^\circ) = 360^\circ$$
 $(\angle A + \angle B + \angle C + \angle D = 360^\circ)$
 $\angle APB + \angle CRD = 180^\circ$

 \Rightarrow

Thus, two opposite angles of quadrilateral PQRS are supplementary.

 \Rightarrow Quadrilateral PQRS is cyclic.

Example 16. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle. —NCERT

Solution. Given : Diagonals AC and BD of a cyclic quadrilateral are diameter of the circle through the vertices A, B, C and D of the quadrilateral ABCD.

To prove : ABCD is a rectangle.

Proof: Since AC is a diameter. $\angle ABC = 90^{\circ}$ (\therefore angle in a semi-circles is 90°) ÷. also, quadrilateral ABCD is a cyclic. $\angle ADC = 180^{\circ} - \angle ABC$ *.*.. $\angle ADC = 180^{\circ} - 90^{\circ} = 90^{\circ}$ \Rightarrow Similarly, $\angle BAC = \angle BCD = 90^{\circ}$. Now, each angle of a cyclic quadrilateral ABCD is 90°. \therefore ABCD is a rectangle. Example 17. If the non-parallel sides of a trapezium are equal, prove that it is cyclic. -NCERT Solution. Given : A trapezium ABCD in which $AB \parallel DC$ and AD = BC. To prove : ABCD is a cyclic trapezium. Construction : Draw DE \perp AB and CF \perp AB. Proof: In order to prove that ABCD is a cyclic trapezium, it is sufficient to prove that $\angle B + \angle D = 180^{\circ}$. Now, In $\triangle DEA$ and $\triangle CFB$, we have AD = BC(given) $(each = 90^{\circ})$ $\angle DEA = \angle CFB$ DE = CF(distance between two parallel lines is always equal) \Rightarrow $\Delta DEA \cong \Delta CFB$ (RHS congruence condition) $\angle A = \angle B$ and $\angle ADE = \angle BCF$ (cpct) \Rightarrow $\angle ADE = \angle BCF$ Now. $90^{\circ} + \angle ADE = 90^{\circ} + \angle BCF$ \Rightarrow $\Rightarrow \angle EDC + \angle ADE = \angle FCD + \angle BCF$ $(\because \angle EDC = 90^\circ, \angle FCD = 90^\circ)$ $\angle ADC = \angle BCD$ \Rightarrow \Rightarrow $\angle D = \angle C$ Thus, $\angle A = \angle B$ and $\angle C = \angle D$.

120

CIRCLES

MATHEMATICS-IX

Now, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\Rightarrow 2\angle B + 2\angle D = 360^{\circ}$

 $\Rightarrow \qquad \angle \mathbf{B} + \angle \mathbf{D} = \frac{360^{\circ}}{2} = 180^{\circ}$

Hence, ABCD is a cyclic trapezium.

- Solution.

Since angles in the same segment of a circle are equal. $\therefore \qquad \angle ACP = \angle ABP \qquad ...(1)$ and $\angle QCD = \angle QBD \qquad ...(2)$ But, $\angle ABP = \angle QBD \qquad ...(3)$ (vertically opposite angles)
from (1), (2) and (3), we get $\angle ACP = \angle QCD$

(:: sum of angles of a quadrilateral is 360°)

- Example 19. Two circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side. —NCERT
- **Solution.** Given : Two circles are drawn with sides AB and AC of \triangle ABC as diameters. The circles intersect at D.

To prove : D lies on BC.

 \Rightarrow BDC is a straight line. Hence, D lies on BC.

Construction : Join A to D. Proof : Since AB and AC are diameters of the circles,

 \therefore $\angle ADB = 90^{\circ}$ and $\angle ADC = 90^{\circ}$

(\therefore angles in a semi-circle is 90°) Adding, we get, $\angle ADB + \angle ADC = 90^{\circ} + 90^{\circ} = 180^{\circ}$

Example 20.ABC and ADC are two right triangles with common hypotenuse AC. Prove that $\angle CAD = \angle CBD$.Solution. $\triangle ABC$ and $\triangle ADC$ are right angled triangles with common hypotenuse AC. Draw a circle with AC as diameter passing through B and D. Join B to D.

from (1) and (2), we get, $\angle A + \angle A = 180^{\circ}$ $2\angle A = 180^{\circ} \Longrightarrow \angle A = 90^{\circ}$ \Rightarrow i.e. $\angle A = \angle C = 90^{\circ}$ Similarly, $\angle B = \angle D = 90^{\circ}$ \therefore ABCD is a parallelogram whose each angle is equal to 90°. \Rightarrow ABCD is a rectangle. Example 22. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals. -NCERT Solution. Given : ABCD is a rhombus. AC and BD are its two diagonals which bisect each other at right angles. D С To prove : A circle drawn on AB as a diameter will pass through O. Construction : From O, draw PQ || AD and EF || AB, Е Proof: Since, $AB = DC \Rightarrow \frac{1}{2}AB = \frac{1}{2}DC$ 10 \Rightarrow AQ = DP B

Similarly,
$$AE = OO$$

 \Rightarrow AQ = OQ = QB

$$\Rightarrow$$
 A circle drawn with Q as a centre and radius AQ passes through A, O and B, which proves the desired result.

Example 23. ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD. —NCERT

(:: Q and P are mid-points of

AB and DC respectively)

Solution.	Since ABCE is a cyclic quadrilateral, $\angle A$	$ED + \angle ABC = 180^{\circ}$	(1)			
	Now, CDE is a straight line.					
	$\Rightarrow \angle ADE + \angle ADC = 180^{\circ}$		(2)			
	$(:: \angle ADC \text{ and } \angle ABC \text{ are } c$	pposite angles of a parallelogram i.e	e. $\angle ADC = \angle ABC$)			
	From (1) and (2), we get					
	$\angle AED + \angle ABC = \angle ADE + \angle ABC$					
	$\Rightarrow \angle AED = \angle ADE$					
	\therefore In $\triangle AED$, $\angle AED = \angle ADE$					
	\Rightarrow AD=AE	(sides opposite to equal angles are	equal)			
	Hence proved.					
Example 24.	AC and BD are chords of a circle which bisect each other. Prove that :					
	(i) AC and BD are diameters	(<i>ii</i>) ABCD is a rectangle.	-NCERT			
Solution.	(<i>i</i>) Let AB and CD be two chords of a circle with center O.					
	Let they bisect each other at O.					
	Join AC, BD, AD and BC.					
122	CIR	CLES MA	THEMATICS-IX			

Now, In $\triangle AOC$ and $\triangle BOD$, we have

OA = OB(:: O is mid-point of AB) $\angle AOC = \angle BOD$ (vertically opp. angles) OC = OD(:: O is mid-point of CD) $\Delta AOC \cong \Delta BOD$ (SAS congruence condition) \Rightarrow AC = BD(cpct) \Rightarrow $\widehat{AO} = \widehat{BC}$...(1) \Rightarrow Similarly, from $\triangle AOD$ and $\triangle BOC$, we have $\widehat{AO} = \widehat{BC}$...(2) Adding (1) and (2), we get, $\widehat{AC} + \widehat{AD} = \widehat{BD} + \widehat{BC}$ $\widehat{CAD} = \widehat{CBD}$ \Rightarrow \Rightarrow CD divides the circle into two equal parts \Rightarrow CD is a diameter. Similarly, AB is a diameter. (*i*) Since, $\triangle AOC \cong \triangle BOD$ (proved above) $\angle OAC i.e. \angle BAC = OBD i.e. \angle ABD$ \Rightarrow AC || BD. \Rightarrow Again, $\triangle AOD \cong \triangle COB$ (proved above) \Rightarrow AD || CB ABCD is a cyclic parallelogram. \Rightarrow $\Rightarrow \angle DAC = \angle DBA$...(3) (\cdot : opp. angles of a parallelogram) also, ABCD is a cyclic quadrilateral, $\therefore \angle DAC + \angle DBA = 180^{\circ}$...(4) from (3) and (4), we get $\angle DAC = \angle DBA = \frac{180^{\circ}}{2} = 90^{\circ}$ Hence, ABCD is a rectangle. Example 25. Bisectors of angles A, B and C of a triangle ABC intersect the circumcircle at D, E and F respectively. Prove that the angles of the ΔDEF are $90^{\circ} - \frac{1}{2}A$, $90^{\circ} - \frac{1}{2}\angle B$ and $90^{\circ} - \frac{1}{2}\angle C$. —NCERT We have, $\angle D = \angle EDF = \angle EDA + \angle ADF$ $= \angle EBA + \angle FCA$ F $(:: \angle EDA \text{ and } \angle EBA \text{ are in the same segment})$ are in the same segment of a circle) $\angle EDA = \angle EBA.$ *.*.. Similarly, $\angle ADF$ and $\angle FCA$ are the angles in the same segment,

$$\therefore \ \angle ADF = \angle FCA$$
$$= \frac{1}{\angle B} + \frac{1}{\angle C} = \frac{1}{(\angle B + \angle C)}$$

$$2 \qquad 2 \qquad 2$$
$$= \frac{1}{2}(180^{\circ} - \angle A) \quad [\because \angle A + \angle B + \angle C = 180^{\circ}]$$

MATHEMATICS-IX

Solution.

$$=90^{\circ}-\frac{1}{2}\angle A$$

Similarly, other two angles of ΔDEF are

$$90^{\circ} - \frac{1}{2} \angle B$$
 and $90^{\circ} - \frac{1}{2} \angle C$.

Hence proved.

PRACTICE EXERCISE

- 1. Show how to complete a circle if an arc of the circle is given.
- 2. The radius of a circle is 13 cm and the length of one of its chord is 10 cm. Find the distance of the chord from the centre.
- 3. AB and CD are two parallel chords of a circle which are on the opposite sides of the centre such that AB = 8 cm and CD = 6 cm. Also, radius of circle is 5 cm. Find the distance between the two chords.
- 4. Two chords AB and AC of a circle are equal. Prove that the centre of the circle lies on the angle bisector of ∠BAC.
- 5. If two circles intersect in two points, prove that the line through their centres is the perpendicular bisector of the common chord.
- 6. If a diameter of a circle bisects each of the two chords of the circle, prove that the chords are parallel.
- 7. In the given figure, two equal chords AB and CD of a circle with centre O, when produced meet at a point P. Prove that (*i*) BP = DP(ii) AP = CP.

- 8. Two circles whose centres are O and O' intersects at P. Through P, a line *l* parallel to OO', intersecting the circles at C and D, is drawn. Prove that CD = 2.OO'.
- 9. In the given figure, O is the centre of the circle and MO bisects $\angle AMC$. Prove that AB = CD.

- 10. Show that if two chords of a circle bisect each other, they must be the diameters of the circle.
- 11. In the given figure, OD is perpendicular to the chord AB of a circle with centre O. If BC is a diameter, show that $AC \parallel OD$ and AC = 2OD.

124

CIRCLES

MATHEMATICS-IX

- 12. Prove that two different circles cannot intersect each other at more than two points.
- 13. Two equal circles intersect in P and Q. A straight line through P meets the circle in X and Y. Prove that QX = QY.

- 14. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord.
- 15. AB and AC are two equal chords of a circle whose centre is O. If OD \perp AB and OE \perp AC, prove that \triangle ADE is an isosceles triangle.
- 16. Prove that angle is a semi-circle is a right angle.
- 17. Prove that the angles in the same segment of a circle are equal.
- 18. Prove that the angle formed by a chord in the major segment is acute.
- 19. Prove that the angle formed by a chord in the minor segment is obtuse.
- 20. If O is the centre of a circle, find the value of *x* in the following figures:

(*i*)

(iii)

MATHEMATICS-IX

CIRCLES

21. In the given figure, two circles intersect at P and Q. PR and PS are respectively the diameters of the circle. Prove that the points R, Q, S are collinear.

- 22. Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter, bisects the third side of the triangle.
- 23. In the given figure, O is the centre of the circle. Prove that $\angle a + \angle b = \angle c$.

 $(ii) \angle QPT$

24. In an isosceles triangle ABC with AB = AC, a circle passing through B and C intersects the sides AB and AC at D and E respectively. Prove that $DE \parallel BC$.

25. In the given figure, PQ is a diameter of a circle with center O. If $\angle PQR = 65^{\circ}$, $\angle SPR = 35^{\circ}$ and $\angle PQT = 50^{\circ}$, find :

(*i*) \angle QPR

(iii)∠PRS

MATHEMATICS-IX

26. In the given figure $\triangle ABC$ is isosceles with AB = AC and $\angle ABC = 55^{\circ}$. Find $\angle BDC$ and $\angle BEC$.

27. Find the angles marked with a letter. O is the centre of the circle.

28. In the following figure, find *x* and *y*.

- 29. Prove that every cyclic parallelogram is a rectangle.
- 30. If two non-parallel sides of a trapezium are equal, prove that it is cyclic.
- 31. Prove that cyclic trapezium is always isosceles and its diagonals are equal.

MATHEMATICS-IX

CIRCLES

- 32. In an isosceles $\triangle ABC$ with AB = AC, a circle passing through B and C intersects the sides AB and AC at D and E respectively. Prove that $DE \parallel BC$.
- 33. In the given figure, ABCD is a parallelogram. A circle through A, B, C intersects CD produced at E. Prove that AD = AE.

34. The bisectors of the opposite angles A and C of a cyclic quadrilateral ABCD intersect the circle at the points E and F respectively. Prove that EF is a diameter of the circle.

35. Prove that the angle bisectors of the angles formed by producing opposite sides of a cyclic quadrilateral (provided the are not parallel) intersect at a right angle.

CIRCLES

MATH	EMATI	CS-IX

PRACTICE TEST

General Instructions :

MM: 30

 $Q.\,1\mathchar`-4$ carry 2 marks, $Q.\,5\mathchar`-8$ carry 3 marks and $Q.\,9\mathchar`-10$ carry 5 marks each.

1. In the given figure, A, B, C and D are four points on the circle. AC and BD intersect at a point E such that $\angle BEC = 120^\circ$, and $\angle ECD = 20^\circ$. Find $\angle BAC$.

- 2. Prove that the line joining the mid-points of the two parallel chords of a circle passes through the centre of the circle.
- 3. Find the value of *x* and *y*:

4. If O is the centre of the circle, find the value of *x*.

- 5. If two intersecting circles have a common chord of length 16 cm, and if the radii of two circles are 10 cm and 17 cm, find the distance between their centres.
- 6. If two non-parallel sides of a trapezium are equal, prove that it is cyclic.
- 7. In the given figure, AB is a chord of a circle with centre O and AB is produced to C such that BC = OB. Also, CO is joined and produced to meet the circle in D. If $\angle ACD = b^\circ$ and $\angle AOD = a^\circ$, prove that $a = 3b^\circ$.

8. In the given figure, ABCD is a cyclic quadrilateral. A circle passing through A and B meets AD and BC in E and F respectively. Prove that EF || DC.

- 9. Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateal is also cyclic.
- 10. The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle. Prove it.

8. In the given figure, ABCD is a cyclic quadrilateral. A circle passing through A and B meets AD and BC in E and F respectively. Prove that EF || DC.

- 9. Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.
- 10. The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle. Prove it.

ANSWERS OF PRACTICE EXERCISE

12 cm						
7 cm						
6 cm						
(<i>i</i>) 100°	(<i>ii</i>) 50°	$(iii)55^\circ$	$(iv) 35^{\circ}$	$(v) 30^{\circ}$	$(vi)50^\circ$	
(<i>i</i>) 15°	$(ii)40^\circ$	$(iii)40^\circ$				
$(i)70^\circ$	(<i>ii</i>) 110°					
(i) $a = 50^{\circ}$		<i>(ii)</i>	$b = 40^{\circ}$			(iii) c = 35°
$(iv) a = 45^\circ$	$^{\circ}, b = 64^{\circ}, c =$	58° (v).	$x = 40^{\circ}, y = 3$	$2^{\circ}, z = 40^{\circ}$	o	(vi) $a = 41^{\circ}, b = 41^{\circ}, c = 41^{\circ}$
$x = 40^{\circ}, y =$	=25°					
	12 cm 7 cm 6 cm (i) 100° (i) 15° (i) 70° (i) $a = 50^{\circ}$ (iv) $a = 45^{\circ}$ $x = 40^{\circ}$, y =	12 cm 7 cm 6 cm (<i>i</i>) 100° (<i>ii</i>) 50° (<i>i</i>) 15° (<i>ii</i>) 40° (<i>i</i>) 70° (<i>ii</i>) 110° (<i>i</i>) $a = 50^{\circ}$ (<i>iv</i>) $a = 45^{\circ}, b = 64^{\circ}, c = x = 40^{\circ}, y = 25^{\circ}$	12 cm 7 cm 6 cm (i) 100° (ii) 50° (iii) 55° (i) 15° (ii) 40° (iii) 40° (i) 70° (ii) 110° (i) $a = 50°$ (ii) (iv) $a = 45°$, $b = 64°$, $c = 58°$ (v) $x = 40°$, $y = 25°$	12 cm 7 cm 6 cm (<i>i</i>) 100° (<i>ii</i>) 50° (<i>iii</i>) 55° (<i>iv</i>) 35° (<i>i</i>) 15° (<i>ii</i>) 40° (<i>iii</i>) 40° (<i>i</i>) 70° (<i>ii</i>) 110° (<i>i</i>) $a = 50^{\circ}$ (<i>ii</i>) $b = 40^{\circ}$ (<i>iv</i>) $a = 45^{\circ}, b = 64^{\circ}, c = 58^{\circ}$ (<i>v</i>) $x = 40^{\circ}, y = 3^{\circ}$ $x = 40^{\circ}, y = 25^{\circ}$	12 cm 7 cm 6 cm (<i>i</i>) 100° (<i>ii</i>) 50° (<i>iii</i>) 55° (<i>iv</i>) 35° (<i>v</i>) 30° (<i>i</i>) 15° (<i>ii</i>) 40° (<i>iii</i>) 40° (<i>i</i>) 70° (<i>ii</i>) 110° (<i>i</i>) $a = 50°$ (<i>ii</i>) $b = 40°$ (<i>iv</i>) $a = 45°, b = 64°, c = 58°$ (<i>v</i>) $x = 40°, y = 32°, z = 40°$ x = 40°, y = 25°	12 cm 7 cm 6 cm (i) 100° (ii) 50° (iii) 55° (iv) 35° (v) 30° (vi) 50° (i) 15° (ii) 40° (iii) 40° (i) 70° (ii) 110° (i) $a = 50^{\circ}$ (ii) $b = 40^{\circ}$ (iv) $a = 45^{\circ}, b = 64^{\circ}, c = 58^{\circ}$ (v) $x = 40^{\circ}, y = 32^{\circ}, z = 40^{\circ}$ $x = 40^{\circ}, y = 25^{\circ}$

ANSWERS OF PRACTICE TEST

1.	100°	3. $x = 75^{\circ}, y = 105^{\circ}$	4. 55°	5. 21 cm
----	------	---	---------------	-----------------