1^{st} Floor, Near Adarsh Jain School, Opp. Vikas Hospital, Thana Road, Najafgarh, Delhi.

Series: PTS/19

Candidates must write the Code on the title page of the answer-book.

PLEASURE TEST SERIES XII - 19

A Compilation By : O. P. Gupta [Call or WhatsApp @ +91-9650 350 480]
For more stuffs on Maths, please visit : www.theOPGupta.com

SECTION - A

Q01. Write the number of binary operations that can be defined on the set $\{1,2\}$.
Q02. Evaluate : $\tan 2 \tan ^{-1}(0.2)$. Q03. If $y=\log _{\sqrt{e}} \sin x$, find $\frac{d y}{d x}$.
Q04. Check if the function $-2 x^{3}+6 x^{2}-6 x+9$ is decreasing in R.
Q05. If a, b, c are three non-zero real numbers, then find the inverse of $\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$.
Q06. Show that a powerful bomb shot along the line of fire $x=2 s+1, y=3 s+2, z=4 s+3$ will never hit a helicopter flying in the plane $2 \mathrm{x}+4 \mathrm{y}-4 \mathrm{z}+11=0$.

SECTION - B

$$
\left|\begin{array}{ccc}
2 b c-a^{2} & c^{2} & b^{2} \\
c^{2} & 2 c a-b^{2} & a^{2} \\
b^{2} & a^{2} & 2 a b-c^{2}
\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2} .
$$

Q07. Using properties of determinants, prove that :

OR Using properties, prove that :

$$
\left|\begin{array}{ccc}
a & b & a x+b y \\
b & c & b x+c y \\
a x+b y & b x+c y & 0
\end{array}\right|=\left(b^{2}-a c\right)\left(a x^{2}+2 b x y+c y^{2}\right) .
$$

Q08. If $\mathrm{x}=\frac{1}{\mathrm{z}}$ and $\mathrm{y}=f(\mathrm{x})$ then, prove that $\frac{\mathrm{d}^{2} f}{\mathrm{dx}^{2}}=2 \mathrm{z}^{3} \frac{\mathrm{dy}}{\mathrm{dz}}+\mathrm{z}^{4} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dz}^{2}}$.
OR If $y^{2}=4 a x$, then evaluate : $\left(\frac{d^{2} y}{d x^{2}}\right) \cdot\left(\frac{d^{2} x}{d y^{2}}\right)$.
Q09. Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ and $\mathrm{g}(\mathrm{x})=[\mathrm{x}]$, where $[\mathrm{x}]$ denotes greatest integer less than
or equal to x. Evaluate : $\frac{(\operatorname{gof})\left(-\frac{5}{3}\right)-(\mathrm{fog})\left(-\frac{5}{3}\right)}{(\mathrm{fo}(\mathrm{gof}))\left(-\frac{5}{3}\right)}$.
Q10. Discuss the differentiability of $f(x)=\left\{\begin{array}{c}1-x, \text { if } x<1 \\ (1-x)(2-x), \text { if } 1 \leq x \leq 2 \\ 2-x, \text { if } x>2\end{array}\right.$ at $x=2$.
Q11. Find the value of θ, satisfying $\left|\begin{array}{ccc}1 & 1 & \sin 3 \theta \\ -4 & 3 & \cos 2 \theta \\ 7 & -7 & -2\end{array}\right|=0$.

Q12. Evaluate $\int_{0}^{\pi / 2} \log \operatorname{cosec} x d x$. Q13. Form the differential equation for $y=\left(\sin ^{-1} x\right)^{2}+A \cos ^{-1} x+B$.
Q14. Express $\cos ^{-1} \sqrt{\frac{\sqrt{1+\mathrm{x}^{2}}+1}{2 \sqrt{1+\mathrm{x}^{2}}}}$ in simplest form. OR Solve : $\sec ^{2} \tan ^{-1} 2+\operatorname{cosec}^{2} \cot ^{-1} 3=x$.
Q15. Solve the differential equation: $x^{2} \frac{d y}{d x}-x y=1+\cos \frac{y}{x}, x \neq 0$ and $x=1, y=\frac{\pi}{2}$.
Q16. Find the values of $\mathrm{a}+2 \mathrm{~b}$ if $\mathrm{A}=\mathrm{B}$, where $\mathrm{A}=\left[\begin{array}{cc}\mathrm{a}+4 & 3 \mathrm{~b} \\ 8 & -6\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{cc}2 \mathrm{a}+2 & \mathrm{~b}^{2}+2 \\ 8 & \mathrm{~b}^{2}-5 \mathrm{~b}\end{array}\right]$.
Q17. A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact?
In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?
Q18. Find the distance of the point $(-2,4,-5)$ from the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.
Q19. Evaluate : $\int \frac{d x}{\sin (x-\alpha) \sin (x-\beta)}$.

Evaluate : $\int \frac{\left(x+x^{3}\right)^{1 / 3}}{x^{4}} d x$.

SECTION - C

Q20. Let $\vec{a}=2 \hat{i}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ be three vectors. Determine a vector \vec{r} which satisfies the condition $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{a}}=0$.
OR Show that: $\left.\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$.
Q21. A toy manufacturer produces two types of dolls; a basic version doll A and a deluxe version doll B. Each doll of type B takes twice as long to produce as one doll of type A. The company has time to make a maximum of 2000 dolls of type A per day. The supply of plastic is sufficient to produce 1500 dolls per day (both A and B combined). The deluxe version, i.e., type B requires a fancy dress of which there are only 600 per day available. If the company makes a profit of ₹ 3 and ₹ 5 per doll respectively, on doll A and B; how many of each should be produced per day in order to maximize the profit? Solve it graphically.
Q22. If PA and QB be two vertical poles of height 16 m and 22 m at points A and B respectively such that $A B=20 \mathrm{~m}$ then, find the distance of a point R on $A B$ from the point A such that $R P^{2}+R Q^{2}$ is minimum.
Q23. Find area of region bounded by $\mathrm{y}=1+|\mathrm{x}+1|,|\mathrm{x}|=3$ and, $\mathrm{y}=0$ after making a rough sketch.
Q24. (i) If the radius of a sphere is measured as 9 cm with an error of 0.03 cm , then find the approximate error in calculating its volume.
(ii) A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~m} / \mathrm{s}$. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
OR (i) Water is dripping out from a conical funnel at a uniform rate of $4 \mathrm{~cm}^{3} / \mathrm{s}$ through a tiny hole at the vertex in the bottom. When the slant height of the water is 3 cm , find the rate of decrease of the slant height of the water-cone. Given that the vertical angle of funnel is 120°.
(ii) Use differentials to evaluate the approximate value of $\log _{\mathrm{e}}(4.01)$, if $\log _{\mathrm{e}} 4=1.3863$.

Q25. A manufacturer has three machine operators A (skilled), B (semi-skilled) and C (non-skilled). The first operator A produces 1% defective items whereas the other two operators B and C produce 5% and 7% defective items respectively. A is on the job for 50% of time, B in the job for 30% of the time and C is on the job for 20% of the time. A defective item is produced, what is the probability that it was produced by B ?
Q26. A bird at $A(7,14,5)$ in space wants to reach a point P on the plane $2 x+4 y-z=2$ when $A P$ is least. Find the position of P and also the distance AP travelled by the bird.

Q01. If set A has m elements, then number of binary operations on A is $m^{m \times m}$ so, we have $2^{2 \times 2}=16$.

Q02. $\frac{5}{12}$
Q03. $2 \cot \mathrm{x}$

Q04. Decreasing function as $f^{\prime}(\mathrm{x})<0 \forall \mathrm{x} \in \mathrm{R}$

Q06. Show that the line is parallel to the plane i.e., the line is at right angle with the normal vector of the plane.
Q07. Consider LHS : Let $\Delta=\left|\begin{array}{ccc}2 b c-a^{2} & c^{2} & b^{2} \\ c^{2} & 2 c a-b^{2} & a^{2} \\ b^{2} & a^{2} & 2 a b-c^{2}\end{array}\right|$
$\Rightarrow \quad=\left|\begin{array}{lll}b c-a^{2}+b c & a b-b a+c^{2} & a c-a c+b^{2} \\ a b-a b+c^{2} & c a-b^{2}+c a & b c-b c+a^{2} \\ a c-a c+b^{2} & b c-b c+a^{2} & a b-c^{2}+a b\end{array}\right|$
$\left.\Rightarrow \quad=\left|\begin{array}{lll}b & -a & c\end{array}\right| \begin{array}{lll}c & a & b \\ c & -b & a \\ a & b & c \\ b & c\end{array} \right\rvert\, \quad$ Taking -1 common from C_{2} in det.(I), and $C_{1} \leftrightarrow C_{2}$ in det.(II)
$\Rightarrow \Delta=(-1) \times\left|\begin{array}{lll}b & \mathrm{a} & \mathrm{c} \\ \mathrm{c} & \mathrm{b} & \mathrm{a} \\ \mathrm{a} & \mathrm{c} & \mathrm{b}\end{array}\right|(-1) \times\left|\begin{array}{lll}\mathrm{a} & \mathrm{c} & \mathrm{b} \\ \mathrm{b} & \mathrm{a} & \mathrm{c} \\ \mathrm{c} & \mathrm{b} & \mathrm{a}\end{array}\right|$
By $\mathrm{C}_{1} \leftrightarrow \mathrm{C}_{2}$ in det.(I) and $\mathrm{C}_{2} \leftrightarrow \mathrm{C}_{3}$ in det.(II)
$\Rightarrow \Delta=(-1) \times(-1)\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|(-1) \times(-1)\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right| \quad \Rightarrow \Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=\left[\Delta^{\prime}\right]^{2}$
Now apply properties to evaluate the value of Δ^{\prime}.

$$
\begin{aligned}
& \text { OR } \begin{array}{l}
\text { LHS : Let } \Delta=\left|\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{ax}+\mathrm{by} \\
\mathrm{~b} & \mathrm{c} & \mathrm{bx}+\mathrm{cy} \\
\mathrm{ax}+\mathrm{by} & \mathrm{bx}+\mathrm{cy} & 0
\end{array}\right| \quad \text { Apply } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{xC}_{1}-\mathrm{yC}_{2} \\
\Rightarrow \Delta=\left|\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & 0 \\
\mathrm{~b} & \mathrm{c} & 0 \\
\mathrm{ax}+\mathrm{by} & \mathrm{bx}+\mathrm{cy} & -\mathrm{ax} 2-2 b x y-\mathrm{cy}^{2}
\end{array}\right| \quad \text { Expanding along } \mathrm{C}_{3} \\
\Rightarrow \Delta=\left(-\mathrm{ax}^{2}-2 \mathrm{bxy}-\mathrm{cy}^{2}\right)\left|\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{~b} & \mathrm{c}
\end{array}\right|=\left(-\mathrm{ax}^{2}-2 \mathrm{bxy}-\mathrm{cy}^{2}\right)\left(\mathrm{ac}-\mathrm{b}^{2}\right) \\
\therefore \Delta=\left(\mathrm{b}^{2}-\mathrm{ac}\right)\left(\mathrm{ax}^{2}+2 \mathrm{bxy}+\mathrm{cy}^{2}\right)=\text { RHS }
\end{array}
\end{aligned}
$$

Q08. OR $-\frac{2 \mathrm{a}}{\mathrm{y}^{3}}$

Q09. - 1
Q11. $\quad \theta=\mathrm{n} \pi, \mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}, \mathrm{n} \in \mathrm{Z}$
Q13. $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-2=0$

Q10. Not differentiable as $\mathrm{LHD}=1$ but $\mathrm{RHD}=-1$
Q12. $\frac{\pi}{2} \log 2$
Q14. $\frac{1}{2} \tan ^{-1} \mathrm{x} \quad$ OR $\quad \mathrm{x}=15$

Q15. $\tan \left(\frac{\mathrm{y}}{2 \mathrm{x}}\right)=\frac{3}{2}-\frac{1}{2 \mathrm{x}^{2}} \quad$ Q16. $\mathrm{a}+2 \mathrm{~b}=2+2 \times 2=6$
Q17. 42%. Since no one trusts a liar, so the statement of B will carry more weight as he speaks truth in more number of cases than A.
Q18. Foot of perpendicular : $\left(-\frac{21}{10}, \frac{55}{10},-\frac{62}{10}\right)$, Required Distance : $\sqrt{\frac{37}{10}}$ units
Q19. $\frac{1}{\sin (\alpha-\beta)} \log \left|\frac{\sin (x-\alpha)}{\sin (x-\beta)}\right|+C \quad$ OR $\quad-\frac{3}{8}\left(\frac{1}{x^{2}}+1\right)^{4 / 3}+C$
Q20. Given that $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}} \quad \Rightarrow(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}) \times \overrightarrow{\mathrm{b}}=\overrightarrow{0} \quad \therefore(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}) \| \overrightarrow{\mathrm{b}}$. Therefore, $\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}=\lambda \overrightarrow{\mathrm{b}} \Rightarrow \overrightarrow{\mathrm{r}}=\lambda \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}$ $\Rightarrow \overrightarrow{\mathrm{r}}=\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+(4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}) \ldots(\mathrm{i})$
$\because \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=0 \quad \therefore[\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+(4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})] \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{k}})=0 \quad \Rightarrow \lambda=-5$
Replacing the value of $\lambda=-5$ in (i) we get : $\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{k}}-8 \hat{\mathrm{j}}-\hat{\mathrm{i}}$.
OR See O.P. Gupta's Mathematicia Vol. 2 Chapter 09 (Scalar Triple Product)
Q21. See O.P. Gupta's MATHEMATICIA Vol. 1 Chapter 08
Q22. 10 m
Q23. 16 sq.units
Q24.
(i) $9.72 \mathrm{~cm}^{3}$
(ii) $\frac{8}{3} \mathrm{~m} / \mathrm{s}$
OR
(i) $\frac{32}{27 \pi} \mathrm{~cm} / \mathrm{s}$
(ii) 1.3888 .

Q25. $15 / 34$
$\mathrm{Q} 26 . \mathrm{P}(1,2,8), \mathrm{AP}=3 \sqrt{21}$ units.

