PLEASURE TEST SERIES XII = 08Series: PTS%Code No. 13/11/2
$$\Phi$$
 Compiled By: OP Gupta [+91-9650 350 480 [+91-9718 240 480] Φ Max. Marks: 100Time Allowed: 3 HoursQ01. Let * be a binary operation defined by a*b = 2a + b = 3, find the value of 3*4.Q02. Write the value of : sin $^{-1} \left(sin \frac{3\pi}{5} \right)$.Q03. What is the value of Δ , if $\Delta = \begin{vmatrix} a + ib & c + id \\ -c + id & a - ib \end{vmatrix} rQ04. Check if the function $-\frac{x^2}{3} + x^2 - x + \frac{3}{2}$ is decreasing in R.Q05. For what value of 'm' and 'p', is the matrix $\begin{pmatrix} 0 & 5 & -3 \\ -5 & m & 4 \\ p - 4 & 0 \end{pmatrix}$ skew-symmetric?Q05. Show that a powerful bomb shot along the line of fire $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{4}$ will never hit a helicopter flying in the plane 2x + $4y - 4z + 11 = 0$.skew-symmetric?Q07. Write the number of binary operations that can be defined on the set {1, 2}.Q04. Check if the representations that can be defined on the set {1, 2}.Q05. Show that a powerful bomb shot along the line of fire $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{4}$ will never hit a helicopter flying in the plane 2x + $4y - 4z + 11 = 0$.Q07. Write the number of binary operations that can be defined on the set {1, 2}.Q08. Let \overline{a} and \overline{b} are collinear?Q09. Write a unit vector, perpendicular to the vectors \overline{a} and \overline{b} both, if it is given that $\overline{a} = 3\hat{a} + 2\hat{j} + 6\hat{k}$ and $\overline{b} = \hat{a} + 2\hat{j} + 2\hat{k}$.Q10. Write the value of $\int \frac{3\cos x}{2\sin^2 x} dx$.[SECTION - 8]Q11. Discuss the differentiability of $f(x) = \begin{cases} 1-x^{-1}, & if x \le 1 \\ m-1, & if x \ge 1 \\ m-1, & if x \ge 1 \end{cases}$ [G11. Discuss the differentiability of $f(x) = \begin{cases} 1-x^2, & if x > 2 \\ 2, & x, & if x > 2 \\ 2, & x, & if x > 2 \end{cases}$ [G12. Let $\overline{a} = 2\hat{1} + \hat{k} + \hat{k}$ and $\overline{c} = 4\hat{1}$$

Q18. Find the distance of the point (-2, 4, -5) from the line
$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$$
.
Q19. Evaluate: $\int \frac{dx}{\sin(x-a)\sin(x-\beta)}$, **(GR)** Evaluate: $\int \frac{(x+x^3)^{1/3}}{x^4} dx$,
Q20. Let f, g: R-7R be defined as f (x) = 1x| and g (x) = [x], where [x] denotes greatest integer less than or equal
to x. Evaluate: $\frac{(gof) \left(-\frac{5}{3}\right) - (fog) \left(-\frac{5}{3}\right)}{(fo(gof)) \left(-\frac{5}{3}\right)}$. **Q21.** If $y^2 = 4ax$, then evaluate: $\left(\frac{d^2y}{dx^2}\right) \left(\frac{d^2x}{dy^2}\right)$.
Q22. Using properties of determinants, prove that: $\begin{vmatrix} 2bc-a^2 \\ c^2 \\ b^2 \\ 2ab-c^2 \end{vmatrix} = \begin{vmatrix} (a^2+b^2+c^3-3abc)^2 \\ (a^2+b^2+c^3-3abc)^2 \end{vmatrix}$.
Q23. Using integrals, find area of region bounded by the following curve after making a rough sketch:
 $y-1+|x+1|$, $|x|=3$, $y=0$.
Q24. Three friends A, B and C visited a Super Market for purchasing fresh fruits, A purchased 1kg apples, 3kg grapes and 2kg conges and paid 5800.
While C paid 700 for 5kg apples, 1kg grapes, and 1kg oranges. Find the cost of each fruit per kg by using matrix method. Why are the fruits good for health?
Q25. A manufacturer has three machine operators A (skilled), 8 (semi-skilled) and C (non-skilled). The first operator A granduces 13k defective items whereas the other two operators B and C produce 5% and 7% defective items whereas the other two operators B and C is on the job for 30% of the time, and C is no the job for 30% of the time, and C is no the job for 30% of the time, and C is no the job for 30% of the time, and C is no the job for 30% of the time, and C is no the job for 30% of the time, and C is no the job for 30% of the time, and C is not the obset of varies the apples. A grape apples.
Q26. A bird at A(7, 14, 5) in space wants to reach a point P on the plane 2x + 4y - z = 2 when AP is least. Find the position of P and also the distance AP travelled by the bird.
Q27. Evaluate $\int \log(\cos cx \, dx, by using properties of the definite integral.
Q28. If the axt and C is prove the distance AP travelled by the bird.
Q29. If PA and 30key the opertol cost in$

HINTS & ANSWERS <i>for</i> PTS XII – 08 [2013-14]			
Q01.	7	Q02.	$\frac{2\pi}{5}$ Q03. $a^2 + b^2 + c^2 + d^2$
-			0, 3 in plane <i>i.e.</i> , the line is at right angle the normal vector of the $2^{2\times 2} = 16$ Q08. 1/3
Q09.	plane. $\frac{4\hat{k} - 8\hat{i}}{4\sqrt{5}}$	· ·	$-\frac{3}{2}\operatorname{cosec} x + k$
Q11	$4\sqrt{5}$ Not differentiable as LHD = because life is precious so ve	1 but R	RHD = -1 OR Point of discontinuity : $x = 1$. No,
Q12.	$2\hat{k}-8\hat{j}-\hat{i}$		$\frac{1}{2} \tan^{-1} x$ OR $x = 15$
Q14.	$\left(\frac{\pi}{2}\right)^2$	Q15.	x = tan ⁻¹ y + k e ^{-tan⁻¹y} - 1 Q16. 9.72 cm ³ OR $\frac{32}{27\pi}$ cm
Q17.	more number of cases than A	liar, so A.	the statement of B will carry more weight as he speaks truth in
Q18.	$\sqrt{\frac{37}{10}}$ units	Q19.	$\frac{1}{\sin(\alpha-\beta)}\log\left \frac{\sin(x-\alpha)}{\sin(x-\beta)}\right + k \text{OR} -\frac{3}{8}\left(\frac{1}{x^2}+1\right)^{4/3} + k$
Q20. Q24.	-1	Q21.	$-2a/y^3$ Q23. 16 sq.units spectively. Then solve the equations so formed by using matrix
	method. The inverse of matr	ix will t	be $\frac{1}{11}\begin{bmatrix} -1 & 1 & 2\\ 8 & -19 & 6\\ -3 & 14 & -5 \end{bmatrix}$.
			te the cost of each fruit is ₹100 per kg. tain nutrients and vitamins which help our body in its proper $\begin{bmatrix} 1/3 & 1/3 & -2/3 \end{bmatrix}$
	growth and maintenance.		OR $\begin{bmatrix} -2/3 & 1/3 & -2/3 \\ 1/3 & -1/6 & 5/6 \end{bmatrix}$ Q25. 15/34
Q26.	P(1, 2, 8), AP = $\sqrt{189}$ units	Q27.	$\frac{\pi}{2}\log 2$
Q28. Max. Z = x + y. Subject to constraints: x/40 + y/70≤1, 2x + 7y≤100; x, y≥0. Here x & y represents the distance travelled by the boy at speed of 40km/hr & 70km/h respectively. (i) x = 1560/41km, y = 140/41km. (ii) It saves petrol. It saves money. (iii) No, because according to the law driving license is issued when a person is above the 18 years of age.			
Q29	10m OR $\frac{3\sqrt{3} r^2}{4}$ sq.units.		
Hints	& Answers For PTS XII – 08	[2013-]	14] By OP Gupta [+91-9650 350 480] www.theOPGupta.com/
Good Luck & God Bless You!!!			