

- **Q17.** Find the intervals in which  $f(x) = xe^{x(1-x)}$  is (i) increasing, and (ii) decreasing.
- **Q18.** Let A be the set of all students of class XII in a school and R be the relation having the same sex (*i.e.*, male or female) on set A, then prove that R is an equivalence relation. Do you think, co-

1

education may be helpful in child development and why?

**Q19.** The probability of a man hitting a target is 1/4. How many times must he fire so that the probability of his hitting the target at least once is more than 2/3?

In recent past, it has been observed that India has done quite well (as compared to other sports) at various International Shooting Contests. What may be the reasons for this?

**Q20.** Let  $\vec{a} = \hat{i} - \hat{j}$ ,  $\vec{b} = \hat{j} - \hat{k}$  and  $\vec{c} = \hat{k} - \hat{i}$ . If  $\vec{d}$  is a unit vector such that  $\vec{a}$  is perpendicular to  $\vec{d}$  and  $[\vec{b} \ \vec{c} \ \vec{d}] = 0$  then, find the vector  $\vec{d}$ .

**OR** Anisha walks 4km towards west, then 3km in a direction  $60^{\circ}$  east of north and then she stops. Determine her displacement with respect to the initial point of departure.

- **Q21.** Using first principle of derivative, differentiate :  $\log \cot 2x$ .
- **OR** If  $\sqrt{1+x^2} + \sqrt{1+y^2} = a(x-y)$  then, show that  $\frac{dy}{dx} = \sqrt{\frac{1+y^2}{1+x^2}}$ . **Q22.** For positive numbers x, y and z, find the numerical value of :  $\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}$ .

## **SECTION – C**

- Q23. In a Legislative assembly election, a political party hired a public relation firm to promote its candidate in three ways : telephone, house calls and letters. The numbers of contacts of each type in three cities A, B & C are (500, 1000, 5000), (3000, 1000, 10000) and (2000, 1500, 4000), respectively. The party paid ₹3700, ₹7200, and ₹4300 in cities A, B & C respectively. Find the costs per contact using matrix method. Keeping in mind the economic condition of the country, which way of promotion is better in your view?
  - **OR** Using elementary column operations, find the inverse of matrix  $\begin{bmatrix} 0 & 0 & -1 \\ 3 & 4 & 5 \\ -2 & -4 & -7 \end{bmatrix}$ .
- **Q24.** If the area enclosed between  $y = mx^2$  and  $x = my^2$ , (m > 0) is 1 sq. unit then, find the value of m.
- **Q25.** By examining the chest X-ray, the probability that T.B. is detected when a person is actually suffering is 0.99. The probability that the doctor diagnosis incorrectly that a person has T.B. on the basis of X-ray is 0.001. In a certain city, 1 in 1000 suffers from T.B. A person is selected at random and is diagnosed to have T.B. What is the probability that he actually has T.B.? 'Tuberculosis (T.B.) is curable.' Comment in only one line.
- **Q26.** For what value of 'a' the volume of parallelopiped formed by  $\hat{i} + a\hat{j} + \hat{k}$ ,  $\hat{j} + a\hat{k}$  and  $a\hat{i} + \hat{k}$  is minimum? Also determine the volume.

**OR** Show that the condition that the curves  $ax^2 + by^2 = 1$  and  $mx^2 + ny^2 = 1$  should intersect

orthogonally is given by:  $\frac{1}{a} - \frac{1}{b} = \frac{1}{m} - \frac{1}{n}$ .

- **Q27.** Find the equation of the plane passing through (2, 1, 0), (4, 1, 1), (5, 0, 1). Find a point Q such that its distance from the plane obtained is equal to the distance of point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.
- **Q28.** A) If y(t) is a solution of (1+t)dy = (1+ty)dt and y(0) = -1 then, what is the value of y(1)?

**B)** Write the degree of the differential equation representing the family of curves  $y^2 = 2c(x + \sqrt{c})$ , where *c* is a positive parameter.

Q29. A farmer owns a field of area 1000m<sup>2</sup>. He wants to plant fruit trees in it. He has sum of ₹2400 to purchase young trees. He has the choice of two types of trees. Type A requires 10m<sup>2</sup> of ground per tree and costs ₹30 per tree and, type B requires 20m<sup>2</sup> of ground per tree and costs ₹40 per tree. When full grown, a type A tree produces an average of 20kg of fruits which can be sold at a profit of ₹12 per kg and a type B tree produces an average of 35kg of fruits which can be sold at a profit of ₹10 per kg. How many of each type should be planted to achieve maximum profit when trees are fully grown? What is the maximum profit? 'India is a land of farmers.' Comment.

- **Q01.**  $\sin \sin^{-1} \frac{1}{\sqrt{2 + x^2 + 2x}} = \cos \cos^{-1} \frac{1}{\sqrt{1 + x^2}} \Rightarrow x = -\frac{1}{2}$
- Q02. Let  $I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx \dots (i)$ . Use  $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b x) dx$  to get,  $I = \int_{-\pi}^{\pi} \frac{\cos^2(-x)}{1 + a^{-x}} dx \dots (ii)$

Adding (i) & (ii), we have : I = 
$$\frac{1}{2} \int_{-\pi}^{\pi} \cos^2 x \, dx = \frac{1}{2} \times 2 \int_{0}^{\pi} \cos^2 x \, dx = \int_{0}^{\pi} \left[ \frac{1 + \cos 2x}{2} \right] dx = \frac{\pi}{2}$$

- **Q03.** Total number of function from A to B is  $2^3 = 8$
- Q04. As x, y, z are in GP, so  $y^2 = xz$  ...(i). Then apply  $C_1 \rightarrow C_1 pC_2 \Rightarrow C_3 \rightarrow C_3 C_1$ . Then expand along  $C_3$  and use (i) to get  $\Delta = 0$

**Q05.** 
$$\vec{A} \cdot \{\vec{B} \times \vec{A} + \vec{B} \times \vec{B} + \vec{B} \times \vec{C} + \vec{C} \times \vec{A} + \vec{C} \times \vec{B} + \vec{C} \times \vec{C}\}$$
  
=  $\vec{A} \cdot (\vec{B} \times \vec{A}) + \vec{A} \cdot (\vec{0}) + \vec{A} \cdot (\vec{B} \times \vec{C}) + \vec{A} \cdot (\vec{C} \times \vec{A}) + \vec{A} \cdot (\vec{C} \times \vec{B}) + \vec{A} \cdot (\vec{0})$   
=  $[\vec{A} \ \vec{B} \ \vec{A}] + [\vec{A} \ \vec{B} \ \vec{C}] + [\vec{A} \ \vec{C} \ \vec{A}] + [\vec{A} \ \vec{C} \ \vec{B}] = 0 + [\vec{A} \ \vec{B} \ \vec{C}] + 0 - [\vec{A} \ \vec{B} \ \vec{C}] =$ 

- Q06. The function f(x) = ||x|-1| is not differentiable at x = 0. Also for  $x \ne 0$ , we have f(x) = |x-1| if x > 0 and f(x) = |-x-1| if x < 0 which reflects their nature of not being differentiable at x = 1, -1 respectively. So, the function f(x) is not differentiable at x = -1, 0, 1. Q07. c = 0
- **Q08.** Let  $\overrightarrow{OA} = \vec{a}$ ,  $\overrightarrow{OB} = \vec{b}$ ,  $\overrightarrow{OC} = \vec{c}$ . We have  $\overrightarrow{OD} = \frac{\vec{b} + \vec{c}}{2}$ . Now LHS :  $\overrightarrow{AB} + \overrightarrow{AC} = (\vec{b} - \vec{a}) + (\vec{c} - \vec{a}) = (\vec{b} + \vec{c} - 2\vec{a}) = 2\left(\frac{\vec{b} + \vec{c}}{2} - \vec{a}\right) = 2\left(\overrightarrow{OD} - \overrightarrow{OA}\right) = 2\overrightarrow{AD} = \text{RHS}.$
- **Q09.** Obtain the coordinates of random point M (*say*) on the given line then, M must satisfy the equation of plane 2x 4y + z = 7. So we get k = 7.

Q10. Use 
$$|adjA| = |A|^{3-1}$$
 to find  $|A| = \pm 6$  then  $|A^{-1}| = \pm \frac{1}{6}$ . So finally  $|3A^{-1}| = 3^3 |A^{-1}| = 27 \left( \pm \frac{1}{6} \right) = \pm \frac{9}{2}$ .

Q11. We have RHL = 1. Also f(0) = 2. Since RHL  $\neq f(0)$  so, f(x) is discontinuous at x = 0. In order to make it continuous, the value of f(x) at x = 0 should be 1.

Q12. I = 
$$\int \frac{\cos^3 x + \cos^3 x}{\sin^2 x + \sin^4 x} dx = \int \frac{(\cos^2 x + \cos^4 x) \cos x}{\sin^2 x + \sin^4 x} dx$$
. Put  $\sin x = t \Rightarrow \cos x \, dx = dt$   
 $\Rightarrow I = \int \frac{[1 - t^2 + (1 - t^2)^2]}{t^2 + t^4} dt = \int \left[ 1 + \frac{2 - 4t^2}{t^2 + t^4} \right] dt = t + \int \frac{2 - 4t^2}{t^2 (1 + t^2)} dt \dots (i)$   
Consider  $\frac{2 - 4t^2}{t^2 (1 + t^2)} = \frac{2 - 4y}{y(1 + y)} = \frac{A}{y} + \frac{B}{1 + y}$  where  $y = t^2$  so, equation (i) becomes,  
 $I = t + \int \left( \frac{2}{t^2} - \frac{6}{1 + t^2} \right) dt = t - \frac{2}{t} - 6 \tan^{-1} t + C \Rightarrow I = \sin x - 2 \csc x - 6 \tan^{-1} \sin x + C$ .  
OR Put  $a + bx = t \Rightarrow x = \frac{t - a}{b} \Rightarrow dx = \frac{1}{b} dt$ . So,  $I = \int \left( \frac{t - a}{b} \right)^2 \frac{1}{t^2} \frac{1}{b} dt = \frac{1}{b^3} \int \left( 1 - \frac{2a}{t} + \frac{a^2}{t^2} \right) dt$   
 $\Rightarrow I = \frac{1}{b^3} \left[ (a + bx) - 2a \log(a + bx) - \frac{a^2}{a + bx} \right] + C$   
 $\Rightarrow I = \frac{x}{b^2} - \frac{2a}{b^3} \log |a + bx| - \frac{a^2}{b^3(a + bx)} + k$ , where  $k = C + \frac{a}{b^3}$ .

Hints & Answers For PTS XII – 07 [2013-14] By OP Gupta [+91-9650 350 480] | www.theOPGupta.com/

**Q13.** Let the d.r.'s of required plane be A, B, C. Since required plane is perpendicular to the given planes so, 
$$2A - 2B + C = 0$$
 and  $A - B + 2C = 0 \Rightarrow \frac{A}{-3} = \frac{B}{-3} = \frac{C}{0}$ . So the required equation of plane is :  
 $-3(x-1) - 3(y+2) + 0(z-1) = 0$  i.e.,  $x + y + 1 = 0$ . And its distance from (1, 2, 2) is  $2\sqrt{2}$  units.  
**Q14.**  $x = y - \sqrt{3 - a^2}$  **OR** OFG Vol.1 Q No.08 (*l*)  
**Q15.** See C.30 on Idefinite Integrals Q No.25. Download it from www.theOPGupta.com/ in the section Class XII. Advanced Level Questions.  
**Q16.**  $1 = \int_{0}^{z} \left| \frac{\log_x x}{n} \right| dx = \frac{1}{2\pi}, \frac{\log_x x}{n} dx + \int_{1}^{z} \frac{\log_x x}{n} dx = \frac{1}{\sqrt{2}}, \frac{\log_x x}{n} dx = \frac{(\log_x x)^2}{x} = 0$  So by (i),  $1 = \frac{5}{2}$ .  
**Q17.**  $f'(x) = e^{i(1-x)}[1 + x - 2x^2] \Rightarrow x = -\frac{1}{2}, 1. \frac{-\sqrt{-1}}{2} - \frac{-\sqrt{-1}}{2} + \frac{\sqrt{-1}}{2} - \frac{\sqrt{-1}}{2} + \frac{\sqrt{-1}}{2} + \frac{\sqrt{-1}}{2}$ .  
**Q18.** The relation R is reflexive, symmetrie and transitive. Co-education is very helpful because it leads to the balanced development of the children and in future they become good citizens.  
**Q19.** Let  $p = \text{probability of hitting the target = 1/4. So  $q = 1 - p = 3/4$ . Let the man fires 'n' times.  
According to question,  $P(z \ge 1) = 1 - P(z < 1) > \frac{2}{3} \Rightarrow 1 - P(0) > \frac{2}{3} \Rightarrow P(0) < \frac{1}{3}$   
i.e.,  ${}^{n}C_{n}(1/4)^{6}(3/4)^{-n^{-1}}(3/3 \Rightarrow (3/4)^{n^{-1}}(3/3 - 1/3) = 3/4 + 2\sqrt{2} + \sqrt{2} + \sqrt{2} + 2} = 1$ . (i) As  $i \perp d \Rightarrow i. \vec{d} = 0 \Rightarrow x = y$ ...(ii).  
Also  $[b \ \dot{b} \ \dot{c} \ d] = 0 \Rightarrow x + y + z = 0$ ...(iii)  
Solving (i), (ii) & (iii), we get:  $\vec{d} = + \left(\frac{2}{\sqrt{2}}, \hat{b} \ \frac{1}{\sqrt{2}}, \hat$$ 

$$= -\log_{x} y \left(\frac{1}{\log_{x} y}\right) + \log_{z} x \left(\frac{\log_{y} z}{\log_{y} x}\right) + \log_{z} y \left(\frac{\log_{x} z}{\log_{x} y}\right) - \log_{x} z \left(\frac{1}{\log_{x} z}\right)$$
$$= -1 + \log_{z} x \log_{x} z + \log_{z} y \log_{y} z - 1 \Rightarrow \Delta = 0 \quad [\because \log_{a} b = \frac{1}{\log_{b} a}, \frac{\log_{b} p}{\log_{b} a} = \log_{a} p].$$

Cost per Contact : Telephone = ₹0.40, House calls = ₹1.00, Letters = ₹0.50. Q23. Telephone is better medium for promotion as it is cheap.

Let  $A = \begin{bmatrix} 0 & 0 & -1 \\ 3 & 4 & 5 \\ -2 & -4 & -7 \end{bmatrix}$ . OR

Since A = A I (Using column operations), we have :  $\begin{vmatrix} 0 & 0 & -1 \\ 3 & 4 & 5 \\ 2 & -4 & -7 \end{vmatrix} = A \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ 

Follow the following steps of properties :

Follow the following steps of properties :  $\mathbf{I}: \mathbf{C}_1 \to \mathbf{C}_1 - \mathbf{C}_3 \qquad \qquad \mathbf{II}: \mathbf{C}_2 \to \mathbf{C}_2 - \mathbf{C}_3 \qquad \qquad \mathbf{III}: \mathbf{C}_2 \to \mathbf{C}_2 - \mathbf{C}_1 \qquad \qquad \mathbf{IV}: \mathbf{C}_3 \to \mathbf{C}_3 + \mathbf{C}_1$   $\mathbf{V}: \mathbf{C}_1 \to \mathbf{C}_1 + \mathbf{C}_3 - \mathbf{C}_2 \qquad \qquad \mathbf{VI}: \mathbf{C}_3 \to \mathbf{C}_3 - 3\mathbf{C}_2 \quad \mathbf{VII}: \mathbf{C}_1 \to \mathbf{C}_1 - \mathbf{C}_3 \qquad \qquad \mathbf{VIII}: \mathbf{C}_1 \to \mathbf{C}_1 - \frac{1}{4}\mathbf{C}_3$  $\mathbf{IX}: \mathbf{C}_3 \rightarrow \left(\frac{1}{4}\right)\mathbf{C}_3$  $\mathbf{X}: \mathbf{C}_2 \to \mathbf{C}_2 + 2\mathbf{C}_3.$ 

Now since  $AA^{-1} = I$  so,  $A^{-1} = \begin{bmatrix} -2 & 1 & 1\\ 11/4 & -1/2 & -3/4\\ -1 & 0 & 0 \end{bmatrix}$ .

- On solving given eqs., we have x = 1/m, 0. Required Area  $= 1 = \int_{-\infty}^{1/m} \sqrt{\frac{x}{m}} dx \int_{-\infty}^{1/m} mx^2 dx \Rightarrow m = \frac{1}{\sqrt{2}}$ . Q24.
- Let E : A person is diagnosed to have T.B., A : The person actually has T.B. Q25. So, P(A) = 1/1000,  $P(\overline{A}) = 999/1000$ , P(E|A) = 990/1000,  $P(E|\overline{A}) = 1/1000$ . By Bayes' Theorem,  $P(A|E) = \frac{P(E|A)P(A)}{P(E|A)P(A) + P(E|\overline{A})P(\overline{A})} = \frac{110}{221}$ . Although T.B. is a dangerous disease still it can be cured with proper medicines (DOTS) under the supervision of medical expert.
- Use Scalar Triple Product of vectors to obtain the volume. Volume,  $V = a^3 a + 1 \Rightarrow a = \frac{1}{\sqrt{2}}$ . Also Q26.

the minimum volume is  $V = 1 - \frac{2}{3\sqrt{3}}$  cubic units.

**OR** OPG Vol.1 Page 61 Q No. 10 **O27**. Equation of plane : x + y - 2z = 3. Note that Q is the Image of point P in the plane. So Q(6, 5, -2).

A)  $\frac{dy}{dt} + \frac{-t}{(1+t)}y = \frac{1}{(1+t)}$ . I.F.  $= (1+t)e^{-t}$  so, solution is  $e^{-t}(1+t)y = -e^{-t} + C$ . Use y(0) = -1 to Q28. get :  $y = -\frac{1}{(1+t)}$  and then,  $y(1) = -\frac{1}{2}$ . **B)**  $y^2 = 2cx + 2c^{3/2} \dots (i)$ . On differentiating we get : c = yy'. Put value of c in (i), we have :  $y^{2} = 2(yy')x + 2(yy')^{3/2} \Longrightarrow \left(\frac{y^{2} - 2xyy'}{2}\right)^{2} = (yy')^{3}.$  It is clear that degree is 3. **Q29.**  $Z = \overline{\xi}(240x + 350y)$ . Also  $x + 2y \le 100$ ;  $3x + 4y \le 240$ ;  $x, y \ge 0$ . Max.  $Z = \overline{\xi}20100$  at (40, 30). For NCERT Solutions, Assignments, Chapter-wise Tests, Solved CBSE Papers and much more, please visit : www.theOPGupta.com

www.theOPGupta.com Good Luck & God Bless You!!! www.theOPGupta.com