CHEMISTRY MOHIT

HOUSE NO. -10, ANAND VIHAR, PEER BABA ROAD, BALTANA
CALL: 9872905686
E-mail:mohitinorganic@gmail.com

OBJECTIYE

Single option correct

1. The circulation of blood in human body supplies O_{2} and releases CO_{2}. The concentration of variable but on the average, 100 ml blood contains 0.02 g of O_{2} and $0.08 \mathrm{~g} \mathrm{of}^{\mathrm{CO}} \mathrm{CO}_{2}$.
CO_{2} at 1 atm and body temperature $37^{\circ} \mathrm{C}$, assuming 10 litre blood in human body.
(A) 2litre, 4 litre
(B) 1.5 litre, 4.5 litre
(C) 1.59litre
(D) 3.83 litfe ,
2. The tube in the fig is shielded at both end and is heated up to double the origina column gases are packed with increasing temperature the Hg column

A

(A)Shift toward B
(B) shift towards A
(C) Remain same
(D) start to vibrate
3. The pressure P of a gas is plotted against its absolute temperature T for two different constant volumes V_{1} and V_{2} when, $\mathrm{V}_{1}>\mathrm{V}_{2}$
(A) Curves have the same slope and do not intersect
(B)Curves must intersect at same point other then T
(C)Curves for V_{2} has a greater slope than that for V
(D)Curves for V_{1} has a greater slope than that fo
4. A flask containing 12 g of a gas of relative molec means of a pump until the pressure was 0.01 atm at the number of molecules left in the flask
(A) 6×10^{19}
(B) 6×10^{18}
(C) 6×10^{17}
(D) 6×10^{13}
5. The molar volume of CO_{2} i
(A) STP
(B) $0^{\circ} \mathrm{C}$ anc $/ 2.0 \mathrm{~atm}$
(C) $127^{\circ} \mathrm{C}$ and 1 atm
(D) $273^{\circ} \mathrm{C}$ and 2 atm
6. What weight of solid amoniilm carbesate $\mathrm{H}_{2} \mathrm{~N}-\mathrm{COONH}_{4}$ when vaporised at $200^{\circ} \mathrm{C}$ will have a volume of 8.96 litres at 760 mm pressure. Assume that the solid completely decomposes under the conditions of the problem.
$\mathrm{H}_{2} \mathrm{OCOONH}_{4(\mathrm{~s})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{NH}_{3(\mathrm{~g})}$
(B) 6 grams
(C) 5 grams
(D) 10 grams
7. Consider the gas burette as shown in figure. Initially, h equals 380 mm . If the mercury reservoir is lowered unti A equal 190 mm , which one of the following statements about the volume of the gas trapped in the burette

120 at a pressure of 100 atm was evacuated by same (1) which of the following is the best estimate of the

(A) When the reservoir is lowered, V is halved.
(B)When the reservoir is lowered, V remains the same.
(C) When the reservoir is lowered, V is 50% larger
(D)When the reservoir is lowered, V is doubled.
8. A certain volume of ethylene after partial reduction with hydrogen in presence of a metal catalyst required 10% more oxygen for complete combustion than it would have originally Calculate the after partial reduction
(A) $2: 3$
(B) $3: 2$
(C) 6:7
(D) $7: 6$
9. Which of the following curves correctly represents the PV isothermfor an ideal gas?

(B)

$\log V$
(C)

$\log \mathrm{V}$
(D)
10. 8.8 g of dry ice (solid CO_{2}) is added to ar open container of volume 8.21 at $27^{\circ} \mathrm{C}$. The lid is closed immediately. What will by the final pressure in the container after all the dry ice has vaporized (at a constant temperature of $27^{\circ} \mathrm{C}$ throughout).
(A) 0.6 atm
(C) 1.6 atm
(D) 60.83 atm
11. Which of the following is no heavier han dry air?
(A)Moist air
(B) SO_{2}
12. An ideal gas expandsacording to $\mathrm{PV}=$ constant. On expansion the temperature of gas.
(A) Will rise
(B) will drop
(C) will remin constant
(D)Cannot benfatermined because the external pressure is not known.
13. Which whows combined relationship of Boyle's law and Charles law

(B) $\mathrm{PV}=\mathrm{K}$

(C) $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$
(D) $\underline{\mathrm{V}}_{2}=\frac{\mathrm{P}_{1}}{\mathrm{~V}_{1}} \times \frac{\mathrm{T}_{2}}{\mathrm{P}_{2}}$

CHEMISTRY MOHIT

HOUSE NO. -10, ANAND VIHAR, PEER BABA ROAD, BALTANA
CALL: 9872905686
E-mail:mohitinorganic@gmail.com

CHEMISTRY MOHIT
 HOUSE NO. -10, ANAND VIHAR, PEER BABA ROAD, BALTANA
 CALL: 9872905686
 E-mail:mohitinorganic@gmail.com

14. One mole of a gas is defined as,
(A)The number of molecules in one litre of gas
(B)The number of molecules in 2.24 litre of a gas
(C) The number of atoms contained in 12 g of $\mathrm{C}-14$ isotope
(D) The number of molecules in 22.4 litre of a gas at STP.
15. A vessel has nitrogen gas and water vapour at a total pressure of 1 atm the partial pressure 0.3 atm . When the contents of this vessel are transformed to another vessel having one third original vessel, completely at the same temperature the total pressure of the system in the new
(A) 3.0 atm
(B) 1 atm
(C) 3.33 atm
16. A balloon filed with ethyne is pricked with a sharp point and quickly dropped identical conditions. After a while the balloon will have.
(A) Shrunk
(B) enlarged
(C) completely collapsed
17. A vessel has nitrogen gas and water vapour at a total pressure of is 0.3 atm . When the contents of this vessel are transferred to another original vessel, completely at the same temperature. The total pressur of the system in the new vessel is.
(A) 2.7 atm
(B) 1 atm
(C) 3.33 atm
(D) 0.3 atm
18. Two gases A and B present separately in two vessels X and Y at the same temperature and pressure with molecular weights M and 2 M respectively are effused out. The orifice in vessel X is circular while that in Y is a square. If the radius of the circular orifice is gqual that of the length of the square orifice find the ratio of rates of effusion of gas A to that of gas B
(A) $\sqrt{2} \pi$
(B) $\sqrt{ } 2 \pi$

(D) $\sqrt{ } 2 / \pi$
19. H_{2} and N_{2} are contained in two separato isothernal vels connected by a thin tube as shown in fig .

When the valve separating the two vessels is opened which of the following will be true for the final state?
(A)Mass of H_{2} in vessel A-Mass of H_{2} in vessel B.
(B) Mass of N_{2} in essel $A=$ Mass of N_{2} in vessel B.
(C) Mass of H_{0} vessel $A=$ Mass of H_{2} in vessel A.
(D) Total pressure will be same in vessels A and B.
20. Acyluder is filled with a gaseous mixture containing equal masses of CO and N_{2} the ratio of their partial
(A) $\mathrm{N}_{2}-\mathrm{PCO}$
(B) $\mathrm{PCO}=0.875 \mathrm{PN}_{2}$
(C) $\mathrm{PCO}=2 \mathrm{PN}_{2}$
(D) $\mathrm{PCO}=1 / 2 \mathrm{PN}_{2}$
21. A sample of a gas was heated from $30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ at a constant pressure. Which of the following statement is tue?
A) Kinetic energy of the gas is doubled
(B) Boyle's law will apply
(C) Volume of the gas will be doubled
(D) None of the above
22. Two gases A and B are at the same temperature. What is the ratio of molar masses $\left[M_{A} / M_{B}\right]$ if the most probable speed of molecules of A is equal to the mean speed of molecules of B ?
(A) 0.875
(B) 0.985
(C) 0.785
(D) 0.885
23. The change in momentum when a molecule (mass m) of an ideal gas, travelling in the x direction with velocity v_{x} his container wall and rebounds elastically is.
(A) $m v_{x}$
(B) $2 m v_{x}$
(C) $-m v_{x}$
(D) $-2 m V_{x}$
24. If equal weights of oxygen and nitrogen are placed in separate containers of equal volume at the same temperature. Which one of the following statements is true?
(A) Both flasks contain the same number of molecules.
(B) The pressure in the nitrogen flask is greater than the one in the oxygen flask.
(C) More molecules are present in the oxygen flask
(D) The nitrogen has a greater average kinetic energy per mole.
25. Van der Waals forces in molecular solids and liquids generally
(A) are found in only systems having permanent dipole moment
(B) are for the most repulsive
(C) increase with increasing size of atoms and molecules involved
(D) result in high melting and boiling temperatures
26. The values of the Vander Wails constant ' a ' for $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and NH_{3} are 1,
(A) O_{2}
(B) N_{2}
(C) NH_{3}
27. 1 Mole each of $\mathrm{O}_{2}, \mathrm{SO}_{2}, \mathrm{Xe}$ and Kr with van der Walls constants (atm $\mathrm{I}^{2} / \mathrm{mol}^{2}$) 1 .
2.349 respectively is kept separately in four different vessels of equal volumes at identic pressure is observed to be P_{1}, P_{2}, P_{3} and P_{4} respectively on the basis of this date alone whin may be expected to be expected to be true?
(A) $\mathrm{P}_{1}<\mathrm{P}_{2}<\mathrm{P}_{3}<\mathrm{P}_{4}$
(B) $\mathrm{P}_{2}<\mathrm{P}_{1}<\mathrm{P}_{3}<\mathrm{P}_{4}$
(C) $\mathrm{P}_{2}<\mathrm{P}_{3}<\mathrm{P}_{4}<\mathrm{P}$
(D) $\mathrm{P}_{3}<\mathrm{P}_{2}<\mathrm{P}_{4}<\mathrm{P}_{1}$
$\mathrm{C}_{2} \mathrm{H}_{4}$
.803, 4.250 and al temperature. Their which of the following
28. Vander wails contains for neon and hydrogen are $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ respectively. The maximum number of moles of Neon which will be form a homogeneous mixture with n_{2} moles of hydrogen at $25^{\circ} \mathrm{C}$ and constant pressure P is
(A) $4 \mathrm{n}_{2} \frac{\mathrm{~Pb}_{2}}{\mathrm{a}_{2}}$
(B) $27 \mathrm{n}_{2} \underline{\mathrm{~Pb}}_{\mathrm{a}_{2}}^{2}-2$
29. For a real gas, deviations from ideal gas behaviour is max mum at
(A) $-10^{\circ} \mathrm{C}$ and 5.0 atm
(B) $10^{\circ} \mathrm{C}$ and 2.0 a m
30. A pre-weighted vessel was filled with oxygen an NTP and weighted. It was then evacuated filled with SO_{2} at the same temperature and pressure, and again weighted. The weight of oxygen will be $\begin{array}{llll}\text { (A) the same as that of } \mathrm{SO}_{2} & \text { (B) } 1 / 2 \text { that of } \mathrm{SO}_{2} & \text { (C)twice that of } \mathrm{SO}_{2} & \text { (D) } 1 / 4 \text { that of } \mathrm{SO}_{2}\end{array}$
31. A vessel has two equal
A and B containing H_{2} and O_{2} respectively each at 1 atm pressure. If the wall separating the conpartneet is removed, the pressure
(A) Will remain un d hanged in A and B
(B) Will increase in A and decrease in B
(C) Will decrease in A and increase in B
(D) Will increase in both A and B and 1 volume of A combine with 1 volume of B to give 2 volume of D. The formula of C is
(B) $\mathrm{A}_{5} \mathrm{~B}_{2}$
(C) $\mathrm{A}_{2} \mathrm{~B}_{5}$
(D) AB

CHEMISTRY MOHIT

HOUSE NO. -10, ANAND VIHAR, PEER BABA ROAD, BALTANA
CALL: 9872905686
E-mail:mohitinorganic@gmail.com

CHEMISTRY MOHIT
 HOUSE NO. -10, ANAND VIHAR, PEER BABA ROAD, BALTANA CALL: 9872905686
 E-mail:mohitinorganic@gmail.com

33. The rms speed of N_{2} molecule in a gas is u.If the temperature is doubled and the nitrogen molecules dissociate into nitrogen atoms. The rms speed becomes
(A) $\mathrm{u} / 2$
(B) 2 u
(C) $4 u$
(D) 14 u
34. In Vander Waals equation of state for a non - ideal gas the term that accounts for inter - molequlat force
(A) $\left(\mathrm{P}+\mathrm{a} / \mathrm{V}^{2}\right)$
(B)(V-b)
(C)RT
35. Four particles have speed $2,3,4$ and $5 \mathrm{~cm} / \mathrm{s}$ respectively. Their RMS speed is
(A) $3.5 \mathrm{~cm} / \mathrm{s}$
(B) $(27 / 2) \mathrm{cm} / \mathrm{s}$
(C) $\sqrt{ }(54) \mathrm{cm} / \mathrm{s}$
36. $\mathrm{X} \mathrm{ml} \mathrm{of} \mathrm{H}_{2}$ gas effuses through a hole in a container is 5 second. The time taken ior the eff sion of the same
volume of the gas specified below under identical conditions is
(A) 10 second: He
(B) 20 Second: O_{2}
(C) 25 second: CO
37. The molecular radius for a certain gas $=1.25 \mathrm{~A}$. What is a reaspnable Vander Waals constant for the gas?
(A) $0.98 \times 10-{ }^{-}$litre $/$mole
(B) 1.43×10^{-2} litre $/ \mathrm{mole}$
(C) 1.97×10^{2} lit
estimate of the magnitude of the

38. A gas will approach ideal behaviour at
(B) low temperature and high pressure
(A) Low temperature and low pressure
(D) High temperature and high pressure
(C) High temperature and low pressure
39. Two flasks X and Y have capacity 1 Land $2 L$ respectively and each of them contain 1 mole of a gas. The temperatures of the flask are so adjusted that average speed of golecules in X is twice as those in Y . The pressure in flask X would be.
(A) same as that in Y
(B) half as t
that in

(C) th ice as that in Y
(D) 8 times of that Y
40. $0.5 \mathrm{dm}^{3}$ flask gas A and $1 \mathrm{dm}^{3}$ flask contain gas B at
the same temperature. If density of $\mathrm{A}=3.0 \mathrm{gm} \mathrm{dm}^{-3}$ and that of $\mathrm{B}=1.5 \mathrm{~g} \mathrm{dm}^{-3}$ and molar mass of $\mathrm{A}=1 / 2 \mathrm{of} \mathrm{B}$,
en ratio of pressure exerted by gases is
(A) $\underline{P}_{\mathrm{P}_{-}}=2$
(B) $\underline{P}_{A}-$ $=1$
(C) $\frac{P_{A}}{P_{B}}=4$
(D) $\frac{\mathrm{P}_{\mathrm{A}_{-}}}{\mathrm{P}_{\mathrm{B}}}=3$

A, B, C are three isotherms respectively at T_{1}, T_{2}, T_{3}.
Temperature will be in order
(A) $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}$
(B) $\mathrm{T}_{1}<\mathrm{T}_{2}<\mathrm{T}_{3}$
(C) $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
(D) $\mathrm{T}_{1}>\mathrm{T}_{2}=\mathrm{T}_{3}$
41. A quantity of hydrogen gas occupies a volume of 30 ml at a certain temperature and pressure. What volume would half this mass of hydrogen occupy at triple the absolute temperature if the pressure were one-ninth that of the original gas?
(A) 270 ml
(B) 90 ml
(C) 405 ml
(D) 135 ml
42. A 0.20 mole sample of a hydrocarbon CxHy after complete combustion with excess O_{2} gas yields 0.80 mole of CO_{2} and 1.0 mole of $\mathrm{H}_{2} \mathrm{O}$ hence hydrocarbon is
(A) $\mathrm{C}_{4} \mathrm{H}_{10}$
(B) $\mathrm{C}_{4} \mathrm{H}_{8}$
(C) $\mathrm{C}_{4} \mathrm{H}_{5}$
(D) $\mathrm{C}_{8} \mathrm{H}_{16}$
43. A flask contains 12 g of gas of relative molecular mass 120 at a pressure of 100 atm was evacuated by means of a pump until the pressure was 0.01 atm . Which of the following is the best estimate of the number o molecules left in the flask
(A) 6×10^{19}
(B) 6×10^{18}
(C) 6×10^{17}
(D) 6×10^{13}
44. Energy of sublimation of solid helium is much lower than that of ice because
(A) Large part of sublimation energy of ice is used to overcome hydrogen bonding
(B) Ice melts at much higher temperature
(C) In solid helium there is Vander Waals force of attraction between helium atoms.
(D) All of the above are correct
45. It takes 26 s for 10 ml of H_{2} to effuse through a porous membrane. It takes 130 for 10 r gas to effuse through the same membrane when both gases are at the same tempetature and pro weight of the unknown gas is
(A) 100
(B) 80
(C) 50
46. Where is the pressure less than 1 atm ?
(A)At a place where water boils at $110^{\circ} \mathrm{C}$
(B) At of Pace where waterboils at $90^{\circ} \mathrm{C}$
(C) At a place below sea level
(D) At a place where water boils at $100^{\circ} \mathrm{C}$
47. Given j - tube has 2.4 ml of air at a pressure of 1 atm . On adding mercury, volume of air is reduced to 1.9 ml as shown difference in the level of mercury in two columns is.

