Class - X Session- 2022-23
Subject- Mathematics (Standard)
CBSE Model Sample Question Paper - 02
Math Magic - CBSE
Time Allowed: 3 Hrs.
10 January 2023
Maximum Marks : 80
General Instructions:

1. This Question Paper has 5 Sections A-E.
2. Section A has 20 MCQs carrying 1 mark each
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2

Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E
8. Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated

	Section - A	
	"Section \boldsymbol{A} consists of 20 questions of 1 mark each"	
Q1.	If the sum of the ages of a father and his son in years is 65 and twice the difference of their ages in years is 50, then the age of father is (a) 40 years (b) 45 years (c) 55 years (d) 65 years	
Q2.	The LCM of two numbers is 14 times their HCF. The sum of LCM and HCF is 600 . If one number is 280 , then the other number is (a) 20 (b) 28 (c) 60 (d) 80	The line segment joining the points P(-3, 2) and Q(5, 7) is divided by the y-axis in the ratio is (a) $3: 1$ (b) $3: 4$ (c) $3: 2$ (d) $3: 5$
Q3.	The radius of a circle whose circumference is equal to the sum of the circumference of the two circles of diameters 36 cm and 20 cm is (a) 56 cm (b) 42 cm (c) 28 cm (d) 16 cm	1

Q5.	A bag contains 5 red balls and n green balls. If the probability of drawing a green ball is three times that of a red ball, then the value of n is (a) 18 (b) 15 (c) 10 (d) 20	1
Q6.	If for a data, Mean:Median $=9: 8$, then Median:Mode $=$ (a) $8: 9$ (b) $4: 3$ (c) $7: 6$ (d) $5: 4$	1
Q7.	f the product of the zeroes of the quadratic polynomial $3 \times 2+5 \mathrm{k}+\mathrm{k}$ is $-2 / 3$, then value of k is (a) -3 (b) -2 (c) 2 (d) 3	1
Q8.	The distance between the points $(\mathrm{a} \cos \alpha+\mathrm{b} \sin \alpha, 0)$ and $(0, \mathrm{a} \sin \alpha-\mathrm{b} \cos \alpha)$ is (a) $a^{2}+b^{2}$ (b) $a+b$ (c) $a^{2}-b^{2}$ (d) $\sqrt{a^{2}+b^{2}}$	1
Q9.	$A B$ and $C D$ are two common tangents to circles which touch each other at C. If D lies on $A B$ such that $C D$ $=4 \mathrm{~cm}$, then $\mathrm{AB}=$ (a) 4 cm (b) 6 cm (c) 8 cm (d) 12 cm	1
Q10.	The mean and median of the data a, b and c are 50 and 35 respectively, where $\mathrm{a}<\mathrm{b}<\mathrm{c}$. If $\mathrm{c}-\mathrm{a}=55$, then $\mathrm{b}-\mathrm{a}$ is (a) 8 (b) 7 (c) 3 (d) 5	1
Q11.	The probability of guessing the correct answer to certain question is m / n. If the probability of not guessing the correct answer to this question is $2 / 3$, then (a) $\mathrm{n}=4 \mathrm{~m}$ (b) $\mathrm{n}=3 \mathrm{~m}$ (c) $\mathrm{n}=2 \mathrm{~m}$ (d) $\mathrm{m}=\mathrm{n}$	1
Q12.	In $\triangle \mathrm{ABC}$, right-angled at $\mathrm{B}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{ACB}=30^{\circ}$ then the length of the side AC is (a) $5 \sqrt{3} \mathrm{~cm}$ (b) $2 \sqrt{ } 3 \mathrm{~cm}$ (c) 10 cm (d) None of these	1
Q13.	A solid is hemispherical at the bottom and conical above. If the surface areas of the two parts are equal, then the ratio of its radius and height of its conical part is (a) $1: \sqrt{ } 2$ (b) $\sqrt{ } 2: 1$ (c) $1: \sqrt{ } 3$ (d) $\sqrt{ } 3: 1$	1

Q14.	A system of two linear equations in two variables has infinitely many solutions, if their graphs a) cut the x-axis b) intersect only at a point c) coincide with each other d) do not intersect at any point	1
Q15.	If 2 is a root of the equation $x^{2}+a x+12=0$ and the quadratic equation $x^{2}+a x+q=0$ has equal roots, then $\mathrm{q}=$ a) 20 b) 16 c) 12 d) 8	1
Q16.	The number is $(\sqrt{3}+\sqrt{5})^{2}$ a) an irrational number b) an integer c) a rational number d) not a real number	1
Q17.	If a and b are two positive integers such that the least prime factor of a is 3 and the least prime factor of b is 5 . Then, the least prime factor of $(a+b)$ is a) 5 b) 3 c) 2 d) 8	1
Q18.	If $\mathrm{P}(\mathrm{E})=0.05$, what will be the probability of 'not E '? a) 0.55 b) 0.59 c) 0.95 d) 0.095	1
	DIRECTION: "In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option"	
Q19.	Statement A (Assertion): If a number x is divided by $y(x, y)$ (both x and y are positive) then remainder will be less than x . Statement R(Reason):. Dividend = Divisor Quotient + Remainder. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.	1
Q20.	Statement A (Assertion): If product of two numbers is 5780 and their HCF is 17, then their LCM is 340 . Statement R(Reason): HCF is always a factor of LCM. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.	1

29	Find the ratio in which the point $-3 . p$ divides the line segment joining the points $-5,-4$ and $-2,3$.Hence find the value of p.	3
30	Prove that $(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=7+\tan ^{2} \theta+\cot ^{2} \theta$	3
31	Find the middle term of the AP 7, 13, 19, ..., 247.	3
	Section - D "Section D consists of 4 questions of 5 mark each"	
32		5
33	A vertical tower stands on horizontal plane and is surmounted by a vertical flag-staff of height 6 m . At a point on the ground, angle of elevation of the bottom and top of the flag-staff are 30 c and 45 c respectively. Find the height of the tower. (Take Root 3 as 1.73) OR From the top of tower, 100 m high, a man observes two cars on the opposite sides of the tower with the angles of depression 30c and 45 c respectively. Find the distance between the cars. (Take Root 3 as 1.73)	5
34	A person on tour has ₹. 360 for his expenses. If he extends his tour for 4 days, he has to cut down his daily expenses by ₹.3. Find the original duration of the tour. A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time it has to increase its speed by $250 \mathrm{~km} / \mathrm{hr}$ from its usual speed. Find its usual speed.	5
35	An elastic belt is placed around therein of a pulley of radius 5 cm . One point on the belt is pulled directly away from the center O of the pulley until it is at $P, 10 \mathrm{~cm}$ from O. Find the length of the best that is in contact with the rim of the pulley. Also, find the shaded area.	5
	Section-E "Case based questions are compulsory" Attempt any 4 parts in each question	

