

S R Study Material

SAMPLE PAPER 2

Class 12 - Mathematics

Time Allowed: 3 hours **Maximum Marks: 80**

General Instructions:

- 1. This Question paper contains 38 questions. All questions are compulsory.
- 2. This Question paper is divided into five Sections A, B, C, D and E.
- 3. In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- 4. In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- 5. In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- 6. In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- 7. In Section E, Questions no. 36 to 38 are Case study-based questions, carrying 4 marks each.
- 8. There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and one subpart each in 2 questions of Section E.
- 9. Use of calculators is not allowed.

Section A

A and B are square matrices of same order. If $(A + B)^2 = A^2 + B^2$, then: 1.

a)
$$AB = -BA$$

b)
$$AB = BA$$

c)
$$AB = O$$

$$d) BA = O$$

2. If
$$\begin{bmatrix} x+y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$$
, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is:

b) 8

d) 18

3. If
$$\cos 2\theta = 0$$
, then $\begin{vmatrix} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{vmatrix}^2$ is equal to

a)
$$\frac{1}{2}$$

b) -1

c)
$$\frac{-1}{2}$$

d) 1

4. The function
$$f(x) = e^{|x|}$$

[1]

- a) differentiable everywhere except at x = 0
- b) differentiable at x = 0

c) differentiable everywhere

d) differentiable at x = -1

5. The point of intersection of the line
$$\frac{x-1}{3} = \frac{y+2}{4} = \frac{z-3}{-2}$$
 and the plane 2x - y + 3z -1 = 0, is

[1]

[1]

[1]

[1]

	a) (10, -10, -3)		b) (10, 10, -3)		
	c) (10, -10, 3)		d) (-10, 10, 3)		
6.	The order of the differential equation of all circles of given radius a is:				
	a) 4		b) 1		
	c) 2		d) 3		
7. Corner points of the feasible region for an LPP are $(0, 2)$, $(3, 0)$, $(6, 0)$, $(6, 0)$, objective function. Maximum of F – Minimum of F =				[1]	
	a) 48		b) 60		
	c) 42		d) 18		
8.	3. If $\vec{a}\cdot\hat{i}=\vec{a}\cdot(\hat{i}+\hat{j})=\vec{a}\cdot(\hat{i}+\hat{j}+\hat{k})=1$, then $\vec{a}=$			[1]	
	a) \hat{i}		$p) \overset{0}{\rightarrow}$		
	c) \hat{j}		d) $\hat{i}+\hat{j}+\hat{k}$		
9.	$\int \frac{dx}{\sqrt{4x^2 - 9}} = ?$			[1]	
	a) $rac{1}{2} \mathrm{log} \left 2x + \sqrt{4x^2 - 9} ight + C$		b) $\frac{1}{4}\log x+\sqrt{4x^2-9} +C$		
	c) $2\log 3x-\sqrt{4x^2-9} +C$		d) $\log 2x+\sqrt{4x^2-9} +C$		
10.	If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then x is equal	to		[1]	
	a) 0		b) 6		
	c) ±6		d) -6		
11.	1. The corner points of the feasible region determined by the system of linear inequalities are $(0, 0)$, $(4, 0)$ and $(0, 5)$. If the maximum value of $z = ax + by$, where $a, b > 0$ occurs at both $(2, 4)$ and $(4, 0)$, then:			[1]	
	a) 3a = b		b) 2a = b		
	c) a = 2b		d) a = b		
12.	The vector having initial and terminal points as (2,5,0) and (-3,7,4) respectively is			[1]	
	a) $\hat{i}+\hat{j}+\hat{k}$		b) $-i+12j+4\dot{k}$		
	c) $5i+2j-4k$		d) $-5\hat{i}+2\hat{j}+4\hat{k}$		
13.	The value of the determinant $\Delta = \begin{vmatrix} 2 \\ 5 \\ 6x \end{vmatrix}$	$egin{array}{cccc} 3 & 4 & & & & & & & & & & & & & & & & &$	is	[1]	

a) -5 b) 4 c) 5 d) 0

- If A and B are independent events such that $0 \le P(A) \le 1$ and $0 \le P(B) \le 1$, then which of the following is not 14. [1]
 - correct?
 - a) A' and B' are independent b) A and B are mutually exclusive
 - c) A and B' are independent d) A' and B are independent
- General solution of $rac{dy}{dx} + (\sec x)\,y = \; an x \; \left(0 \leqslant x < rac{\pi}{2}
 ight) \;$ is [1] 15.

	a) $y(\sec x + \tan x) = \sec x + \tan x - x + C$	b) $y(\sec x - \tan x) = \sec x + \tan x - x + C$	
	c) $y(\sec x + \tan x) = \sec x - \tan x - x + C$	d) $y(\sec x - \tan x) = \sec x - \tan x - x + C$	
16.	The unit vector normal to the plane containing $ec{a}=(\hat{i}-\hat{j}-\hat{k})$ and $ec{b}=(\hat{i}+\hat{j}+\hat{k})$ is		
	a) $rac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$	b) $\frac{1}{\sqrt{2}}(-\hat{i}+\hat{k})$	
	c) $(\hat{j} - \hat{k})$	d) $(-\hat{j}+\hat{k})$	
17.	If $x = a \cos nt - b \sin nt$, then $\frac{d^2x}{dt^2}$ is		[1]
	a) $_{-n}^{2}$ _X	b) _n ² _x	
	c) -nx	d) nx	
18.	If the projections of \overrightarrow{PQ} on OX, OY, OZ are respectively 1, 2, 3 and 4, then the magnitude of \overrightarrow{PQ} is		
	a) 13	b) 169	
	c) 19	d) 144	
19.	Assertion (A): If the circumference of the circle is changing at the rate of 10 cm/s, then the area of the circle		
	changes at the rate $30 \text{ cm}^2/\text{s}$, if radius is 3 cm .		
		circle, respectively, then rate of change of area of the circle	
	is given by $rac{dA}{dt}=2\pi rrac{dr}{dt}.$		
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the	
	explanation of A.	correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
20.	Assertion (A): The $f: R \to R$ given by $f(x) = [x] + x$ is one-one onto.		
Reason (R): A function is said to be one-one and onto, if each element has unique image and ra			
	equal to codomain of $f(x)$.		
	 a) Both A and R are true and R is the correct explanation of A. 	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
		ction B	
21.	Write the interval for the principal value of function and draw its graph: sec ⁻¹ x.		
	·······	OR .	
	Write the interval for the principal value of function a	and draw its graph: sin ⁻¹ x	
22.	Show that the function $f(x) = x^2$ is strictly increasing function on $[0, \infty)$		
23.	Find the rate of change of the area of a circle with respect to its radius r when $r = 3$ cm		
		OR	
	Find the intervals in which the function f given by $f(x)$	$(x) = 2x^2 - 3x$ is	
	i. increasing		
24	ii. decreasing Evaluate: $\int_{-2x-1}^{2x-1} dx$		[2]
24.	Evaluate: $\int \frac{2x-1}{(x-1)^2} dx$ Find the maximum and minimum values of $f(x) = \sin x$ in the interval $[\pi, 2\pi]$.		
25.		x in the interval $[\pi, 2\pi]$.	[2]
	Sec	.uon C	

- 26. Evaluate the definite integral $\int_0^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos^4 x + \sin^4 x} dx$ [3]
- 27. Bag A contains 3 red and 2 black balls, while bag B contains 2 red and 3 black balls. A ball drawn at random from bag A is transferred to bag B and then one ball is drawn at random from bag B. If this ball was found to be a red ball, find the probability that the ball drawn from bag A was red.

28. Evaluate
$$\int_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx$$
 [3]

OR

Evaluate $\int rac{x+1}{x(1+xe^x)^2} dx$

29. Solve
$$x^2 \frac{dy}{dx} - xy = 1 + \cos\left(\frac{y}{x}\right), x \neq 0$$
 and $x = 1, y = \frac{\pi}{2}$

Solve the differential equation: $\frac{dy}{dx} + y = \cos x$

30. Find the maximum value of
$$Z = 7x + 7y$$
 subject to the constraints $x \ge 0$, $y \ge 0$, $x + y \ge 2$ and $2x + 3y \le 6$ [3]

OR

Solve the Linear Programming Problem graphically:

Maximize Z = 3x + 5y Subject to

$$x + 2y \le 20$$

$$x + y \le 15$$

 $y \le 5$

$$x, y \ge 0$$

31. Find
$$\frac{dy}{dx}$$
, If $y = (\cos x)^x + (\sin x)^{1/x}$. [3]

Section D

- 32. Find the area between the curves y = x and $y = x^2$
- 33. Let R be relation defined on the set of natural number N as follows: [5] $R = \{(x, y): x \in N, y \in N, 2x + y = 41\}$. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.

OR

Let A = R - {3} and B = R - {1}. Consider the function f: A \Rightarrow B defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

- 34. Show that the matrix, $A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & -1 & 2 \\ 3 & 4 & 1 \end{bmatrix}$ satisfies the equation, $A^3 A^2 3A I_3 = O$. Hence, find A^{-1}
- 35. Find the perpendicular distance of the point (1, 0, 0) from the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$. Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.

OR

Find the shortest distance between the lines given below: $\frac{x-1}{-1} = \frac{y+2}{1} = \frac{z-3}{-2}$ and $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+1}{-2}$.

Hint: Change the given equation is vector form

Section E

36. Read the following text carefully and answer the questions that follow:

Mr. Ajay is taking up subjects of mathematics, physics, and chemistry in the examination. His probabilities of

[4]

[5]

getting a grade A in these subjects are 0.2, 0.3, and 0.5 respectively.

- i. Find the probability that Ajay gets Grade A in all subjects. (1)
- ii. Find the probability that he gets Grade A in no subjects. (1)
- iii. Find the probability that he gets Grade A in two subjects. (2)

OR

Find the probability that he gets Grade A in at least one subject. (2)

37. Read the following text carefully and answer the questions that follow:

[4]

A plane started from airport O with a velocity of 120 m/s towards east. Air is blowing at a velocity of 50 m/s towards the north As shown in the figure.

The plane travelled 1 hr in OA direction with the resultant velocity. From A and B travelled 1 hr with keeping velocity of 120 m/s and finally landed at B.

- i. What is the resultant velocity from O to A? (1)
- ii. What is the direction of travel of plane O to A with east? (1)
- iii. What is the total displacement from O to A? (2)

OR

What is the resultant velocity from A to B? (2)

38. Read the following text carefully and answer the questions that follow:

[4]

On the request of villagers, a construction agency designs a tank with the help of an architect. Tank consists of a rectangular base with rectangular sides, open at the top so that its depth is 2 m and volume is 8 m³ as shown below. The construction of the tank costs ₹70 per sq. metre for the base and ₹45 per square metre for sides.

i. Express making cost C in terms of length of rectangle base. (1)

- ii. If x and y represent the length and breadth of its rectangular base, then find the relation between the variables. (1)
- iii. Find the value of ${\bf x}$ so that the cost of construction is minimum. (2)

ΩR

Verify by second derivative test that cost is minimum at a critical point. (2)

To buy solution of this sample paper at Rs 50 kindly whatsapp at 9811296736