4/29/23, 9:29 AM Print Question Paper

Maple Online Classes A-25 DLF Loni Ghaziabad UP 201301

TEST PAPER: VECTOR ALGEBRA AND THREE DIMENSIONAL GEOMETRY Class 12 - Mathematics

Time Allowed: 2 hours Maximum Marks: 70

General Instructions:

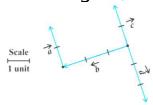
All Questions Are Compulsory.

Section A

1. Is the measure of 10 Newton a scalar or vector?

2. Is the measure of 20 m/s towards north is scalar or vector? [1]

3. In the Figure, which are the Collinear vector. [1]



4. In the given Figure, which vectors are the Coinitial vectors?. [1]

Scale Tunit b

- 5. Consider two points P and Q with position vectors $\overrightarrow{OP} = 3\vec{a} 2\vec{b}$ and $\overrightarrow{OQ} = \vec{a} + \vec{b}$. Find the position vector (internally) of a point R which divides the line joining P and Q in the ratio 2 : 1.
- 6. Find the projection of the vector $\vec{a}=2\hat{i}+3\hat{j}+2\hat{k}$ on the vector $\vec{b}=\hat{i}+2\hat{j}+\hat{k}$.
- 7. Find angle heta between the vectors $ec{a}=\hat{i}+\hat{j}-\hat{k}$ and $ec{b}=\hat{i}-\hat{j}+\hat{k}$
- 8. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x- [1] axis.

a)
$$-rac{\sqrt{3}}{2}\hat{i}-rac{1}{2}\hat{j}$$

b)
$$\frac{\sqrt{3}}{2}\hat{i} - \frac{1}{2}\hat{j}$$

c)
$$-\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$$

d)
$$rac{\sqrt{3}}{2}\,\hat{i}+rac{1}{2}\hat{j}$$

9. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. [1] Determine the girl's displacement from her initial point of departure.

a)
$$rac{5}{2}\hat{i}-rac{3\sqrt{3}}{2}\hat{j}$$

b)
$$\frac{-5}{2}\hat{i}+\frac{3\sqrt{3}}{2}\hat{j}$$

C)
$$rac{-5}{2}\hat{i}-rac{3\sqrt{3}}{2}\hat{j}$$

d)
$$rac{5}{2}\hat{i}+rac{3\sqrt{3}}{2}\hat{j}$$

10. Find the value of x for which $x\left(\hat{i}+\hat{j}+\hat{k}\right)$ is a unit vector.

a)
$$\pm \frac{1}{\sqrt{2}}$$

b)
$$\pm \frac{1}{\sqrt{3}}$$

c)
$$\pm \frac{1}{\sqrt{7}}$$

d)
$$\pm \frac{1}{\sqrt{5}}$$

- 11. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2\vec{a} + \vec{b})$ and $(\vec{a} 3\vec{b})$ externally in the ratio 1 : 2. Also, show that P is the mid point of the line segment RQ.
 - a) $5\vec{a}+5\vec{b}$

b) $5\vec{a}+3\vec{b}$

c) $3\vec{a}+3\vec{b}$

- d) $3\vec{a}+5\vec{b}$
- 12. The two adjacent sides of a parallelogram are $2\hat{i} 4\hat{j} + 5\hat{k}$ and $\hat{i} 2\hat{j} 3\hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area.
 - a) $rac{1}{7}\Big(-3\hat{i}-6\hat{j}+2\hat{k}\Big)\,;$ $13\sqrt{5}$

b) $rac{1}{7}\Big(3\hat{i}-6\hat{j}-2\hat{k}\Big)$; $12\sqrt{5}$

C) $rac{1}{7}ig(3\hat{i}-6\hat{j}-7\hat{k}ig)$; $15\sqrt{5}$

- d) $rac{1}{7}ig(3\hat{i}-6\hat{j}+2\hat{k}ig)$; $11\sqrt{5}$
- 13. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if [1]
 - a) $heta=rac{\pi}{3}$

b) $\theta = \frac{2\pi}{3}$

c) $\theta = \frac{\pi}{2}$

- d) $heta=rac{\pi}{4}$
- 14. The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is

[1]

a) -1

b) 1

c) 0

- d) 3
- 15. If θ is the angle between any two vectors \vec{a} and \vec{b} , then $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to

a)
$$\pi$$

b)
$$\frac{\pi}{2}$$

c)
$$\frac{\pi}{4}$$

perpendicular.

Section B

- 16. Show that the points $A\left(2\hat{i}-\hat{j}+\hat{k}\right)$, $B\left(\hat{i}-3\hat{j}-5\hat{k}\right)$, $C\left(3\hat{i}-4\hat{j}-4\hat{k}\right)$ are the vertices of a right angled triangle.
 - [2]
- 18. If \vec{a} is a unit vector and $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$, then find $|\vec{x}|$.

If $ec a=5\hat i-\hat j-3\hat k$ and $ec b=\hat i+3\hat j-5\hat k$, then show that the vectors ec a+ec b and ec a-ec b are

- 19. Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its vertices. [2]
- 20. If $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $2\hat{\mathbf{i}} + 5\hat{\mathbf{j}}$, $3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} 3\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} 6\hat{\mathbf{j}} \hat{\mathbf{k}}$ are the position vectors of points A, B, C and D [2] respectively, then find the angle between \overrightarrow{AB} and \overrightarrow{CD} . Deduce that \overrightarrow{AB} and \overrightarrow{CD} are collinear.
- 21. If with reference to the right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} and \hat{k} , [2] $\vec{\alpha} = 3\hat{i} \hat{j}$, $\vec{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is \parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.
- 22. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$.
- 23. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}| = 3, |\vec{b}| = 4, |\vec{c}| = 5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$.

- 24. Find the direction cosines of a line which makes equal angles with the co-ordinate axes. [2]
- 25. Show that the points (2, 3, 4), (-1, -2, 1), (5, 8, 7) are collinear. [2]

Section C

- 26. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and $\vec{c} \cdot \vec{d} = 15$.
- 27. Show that each of the given three vectors is a unit vector: $\frac{1}{7}\left(2\hat{i}+3\hat{j}+6\hat{k}\right), \frac{1}{7}\left(6\hat{i}+2\hat{j}-3\hat{k}\right), \frac{1}{7}\left(3\hat{i}-6\hat{j}+2\hat{k}\right)$ Also, show that they are mutually perpendicular to each other.
- 28. If either vector $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your answer with an example.
- 29. Show that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} 4\hat{k}$ from the vertices of a right angled triangle.
- 30. Find the distance between the lines I_1 and I_2 given by $\vec{r} = \hat{i} + 2\hat{j} 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$ and $\vec{r} = 3\hat{i} + 3\hat{j} 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + 6\hat{k})$

Section D

- 31. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2\hat{i}-\hat{j}+3\hat{k}$ and $\vec{c}=\hat{i}-2\hat{j}+\hat{k}$ find a unit vector parallel to the vector $2\vec{a}-\vec{b}+3\vec{c}$
- 32. Show that the line through points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (-1, **[5]** -2, 1), (1, 2, 5).

- 33. Show that the line through the points (1, -1, 2), (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
- 34. Show that the lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other. [5]