

CLASS XII GUESS PAPER MATHS

DIFFRENTIAL EQUATIONS

- Show that $y = ae^{2x} + be^{-x}$ is a solution of the differential equation $\frac{d^2y}{dx^2} \frac{dy}{dx} 2y = 0$.
- Show that $y = \frac{c x}{1 + cx}$ is a solution of the differential equation $(1 + x^2) \frac{dy}{dx} + (1 + y^2) = 0$
- Show that the differential equation representing one parameter family of curves $(x^2 - y^2) = c (x^2 + y^2)^2 is (x^3 - 3xy)^2 dx = (y^3 - 3x^2) dy$
- 4. Show that the differential equation that represents the family of all parabolas having their axis of symmetry coincident with the axis of x is $yy_2 + y_1^2 = 0$.
- Verify that $y = ce^{tan^{-1}x}$ is a solution of the differential equation $(1+x^2)\frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} = 0$
- 6. Verify that $y = y = e^{m\cos^{-1}x}$ satisfies the differential equation $(1-x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} m^2y = 0$
- 7. Verify that $y = \log (x + \sqrt{x^2 + a^2})^2$ satisfies the differential equation $(a^2 + x^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = 0$
- 8. Show that the differential equation of which $y = 2(x^2 1) + ce^{-x^2}$ is a solution is $\frac{dy}{dx} + 2xy = 4x^3$ 9. Obtain the differential
- 9. Obtain the differential equation of all circles of radius r.
- 10. Find the differential equation if all circles touching the
 - (i) x-axis at the origin

- (ii) y-axis at the origin
- 11. Form the differential equation of the family of curves represented by

$$y = c (x - c)^2$$
, where c is a parameter.

- 12. Form the diff. equation corresponding to $y^2 = a(b x)(b + x)$ by eliminating parameters a and b.
- 13. Find the differential equation of all the circles in the first quadrant which touch the coordinate axes.
- 14. Form the differential equation of family of parabolas having vertex at the origin and axis along positive yaxis.
- 15. Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
- 16. Form the differential equation corresponding to $y^2 = m(a^2 x^2)$ by eliminating parameters m and a.

- 17. Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis
- 18. Form the differential equation of the family of hyperbolas having foci on X-axis and centre at the origin.
- 19. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
- 20. Find the differential equation of all non-vertical lines in a plane.

GROUP-B (VARIABLE SEPARABLE FORM AND HOMOGENEOUS DIFF. EQN.)

(i)
$$\frac{dy}{dx} = \frac{x}{x^2 + 1}$$

(ii)
$$(e^x + e^{-x}) \frac{dy}{dx} = (e^x - e^{-x})$$

Solve the initial value problem $e^{(dy/dx)} = x + 1$; y(0) = 5.

$$(1+x^2)\frac{dy}{dx} - x = 2 \tan^{-1} x$$

(ii)
$$(x^{3} + x^{2} + x + 1) \frac{dy}{dx} = 2x^{2} + x$$
(ii)
$$e^{x} \sqrt{1 - y^{2}} dx + \frac{y}{x} dy = 0$$

4. Solve: (i)
$$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$$

$$e^{x}\sqrt{1-y^{2}}dx + \frac{y}{x}dy = 0$$

- 5. Solve the differential equation $(1 + e^{2x}) dy + (1 + y^2) e^x dx = 0$ given that when x = 0, y = 1.
- 6. Solve the differential equation $(1 + y^2)(1 + \log x) dx + x dy = 0$ given that when x = 1, y = 1.
- 7. Solve the differential equation $x(1 + y^2) dx y(1 + x^2) dy = 0$, given that y = 0 when x = 1.
- 8. Solve: (i) $(x^2 yx^2) dy + (y^2 + x^2y^2) dx = 0$
- (ii) $3e^x \tan y \, dx + (1 e^x) \sec^2 y \, dy = 0$

9. Solve (i)
$$\frac{dy}{dx} = 1 + x + y + xy$$

(ii)
$$y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$$

10. Show that general solution of the differential equation $\frac{dy}{dx} + \frac{y^2 + y + 1}{x^2 + x + 1} = 0$ is given by

$$x + y + 1 = A (1 - x - y - 2xy)$$
, where A is a parameter.

- 11. Find the particular solution of the diff. equation $\log \left(\frac{dy}{dx}\right) = 3x + 4y$ given that y = 0 when x = 0.
- 12. Find the equation of the curve passing through the point (1, 1) whose differential equation is $x dy = (2x^2 + 1)dx (x \neq 0).$

$$y\sqrt{1+x^2} + x\sqrt{1+y^2} \frac{dy}{dx} = 0$$

(ii)
$$\sqrt{1+x^2} dy + \sqrt{1+y^2} dx = 0$$

(iii).
$$\sqrt{1+x^2+y^2+x^2y^2} + xy\frac{dy}{dx} = 0$$

(iii).
$$\sqrt{1+x^2+y^2+x^2y^2} + xy\frac{dy}{dx} = 0$$
 (iv) $(1+x)(1+y^2)dx + (1+y)(1+x^2)dy = 0$

(v)
$$\tan y \frac{dy}{dx} = \sin (x + y) + \sin (x - y)$$
 (vi) $\frac{dy}{dx} = e^{x+y} + e^{-x+y}$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \mathrm{e}^{x+y} + \mathrm{e}^{-x+y}$$

$$\frac{dy}{dx} = (\cos^2 x - \sin^2 x)\cos^2 y$$

(viii)
$$(1 + x) (1 + y^2) dx + (1 + y) (1 + x^2) dy = 0$$

(ix)
$$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2, y(0) = 1$$

$$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2, y(0) = 1$$

$$(x) \frac{dy}{dx} = \frac{2x(\log x + 1)}{\sin y + y \cos y} ; y(1) = 0$$

For the differential equation $xy \frac{dy}{dx} = (x + 2) (y + 2)$. Find the solution curve passing through 14. the point (1, -1).

15. Solve: (i)
$$\sin^{-1}\left(\frac{dy}{dx}\right) = x + y$$
 (ii) $\frac{dy}{dx} = \cos(x + y)$ (iii) $\frac{dy}{dx} = (4x + y + 1)^2$

(ii)
$$\frac{dy}{dx} = \cos(x+y)$$

(iii)
$$\frac{dy}{dx} = (4x + y + 1)^2$$

(iv)
$$\frac{dy}{dx} = \cos(x+y) + \sin(x+y)$$
 (v) $(x+y+1)^2 dy = dx$, $y(-1) = 0$ (vi) $\cos^2(x-2y) = 1 - 2\frac{dy}{dx}$

(v)
$$(x + y + 1)^2 dy = dx$$
, $y(-1) = 0$

$$(vi)\cos^2(x-2y) = 1 - 2\frac{dy}{dx}$$

(vii)
$$(x - y)(dx + dy) = dx - dy$$
, $y(0) = -1$ (viii) $x + y + 1 = \tan y$

(viii)
$$x + y + 1 = \tan y$$

$$(ix) x - y = e^{x+y+1}$$

$$(x) \quad (x+y) (dx-dy) = dx + dy$$

(xi)
$$\frac{dy}{dx} = \frac{(x-y)+3}{2(x-y)+5}$$

- 16. Solve the differential equation $x^2 dy + y(x + y) dx = 0$, given that y = 1 when x = 1.
- 17. Solve the differential equation (x + y)dy + (x y)dx = 0, given that y = 1 when x = 1.
- 18. Solve the differential equation $(x^2 y^2)dx + 2xy dy = 0$; given that y = 1 when x = 1.

19. Solve: (i)
$$x^2ydx - (x^3 + y^3)dy = 0$$

(ii)
$$(x^2 + xy)dy = (x^2 + y^2)dx$$

(iii)
$$(3xy + y^2)dx + (x^2 + xy)dy = 0$$

(iv)
$$(x^3 - 3xy^2)dx = (y^3 - 3x^2y)dy$$

(v)
$$xdy - ydx = \sqrt{x^2 + y^2}dx$$

$$(vi) x \frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$$

$$(vii)$$
 $2ye^{x/y}dx + (y-2xe^{x/y})dy = 0$

(viii)
$$(1 + e^{x/y})dx + e^{x/y}\left(1 - \frac{x}{y}\right)dy = 0$$

20. Solve the following initial value problems:

(i)
$$x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x - y \sin\left(\frac{y}{x}\right) = 0, y(1) = \frac{\pi}{2}$$

(ii)
$$xe^{y/x} - y\sin\left(\frac{y}{x}\right) + x\frac{dy}{dx}\sin\left(\frac{y}{x}\right) = 0, y(1) = 0$$

(iii)
$$\log |x| = \cos\left(\frac{y}{x}\right), x \neq 0$$

$$(vi) e^{-y/x} \left\{ sin\left(\frac{y}{x}\right) + cos\left(\frac{y}{x}\right) \right\} = 1 + log x^2, x \neq 0$$

CBSEGuess.com

$$2x^{2}\frac{dy}{dx}-2xy+y^{2}=0, y(e)=e$$

(vi)
$$2xy + y^2 - 2x^2 \frac{dy}{dx} = 0, y(1) = 2$$

(vii)
$$(x^2 + y^2)dx + dy = 0, y(1) = 1$$

(viii)
$$(xe^{y/x} + y)dx = xdy, y(1) = 1$$

(ix)
$$(x^2-2y^2)dx + 2xydy = 0, y(1) = 1$$

(x)
$$xe^{y/x} - y\sin\left(\frac{y}{x}\right) + x\frac{dy}{dx}\sin\left(\frac{y}{x}\right) = 0$$
, $y(1) = 0$

(xi)
$$2x^2 \frac{dy}{dx} - 2xy + y^2 = 0, y(e) = e$$

(xii)
$$2xy + y^2 - 2x^2 \frac{dy}{dx} = 0, y(1) = 2$$

GROUP-C (LINEAR DIFFRENTIAL EQUATIONS)

1. Solve (i)
$$x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x, x > 0$$

$$(x^2-1)\frac{dy}{dx} + 2xy = \frac{1}{x^2-1}$$

(ii)

(iii)
$$\frac{dy}{dx} + y \sec x = \tan x \left(0 \le x < \frac{\pi}{2} \right)$$

$$\cos^2 x \frac{dy}{dx} + y = \tan x \left(0 \le x < \frac{\pi}{2} \right)$$

(iv)

(v)
$$(x^2+1)\frac{dy}{dx} + 2xy = \sqrt{x^2+4}$$

(vi) Solve:
$$\frac{dy}{dx} - 2y = \cos 3x$$

$$\frac{dy}{(vii)} + y = \cos x - \sin x$$

$$\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x$$

(viii)

$$\frac{dy}{dx} + \frac{y}{x} = \cos x + \frac{\sin x}{x}, x > 0$$

$$\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$$

$$\frac{dy}{dx} = -\frac{x + y \cos x}{1 + \sin x}$$

2. Solve each of the following initial value problems :

$$\frac{dy}{dx} - y = e^x, y(0) = 1$$

(ii)
$$x \frac{dy}{dx} + y = x \log x, y(1) = \frac{1}{4}$$

$$(1+x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0$$

y(0) = 0.

$$\frac{dy}{dx} + \frac{2x}{x^2 + 1}y = \frac{1}{(x^2 + 1)^2}, y(0) = 0$$

(iii)

(v)
$$(x^2+1)y'-2xy = (x^4+2x^2+1)\cos x, y(0) = 0$$

CBSEGuess.com

3. Solve :(i)
$$x \frac{dy}{dx} + y - x + xy \cot x = 0, x \neq 0$$

(ii)
$$(1+x^2)dy + 2xy dx = \cot x dx, x \neq 0$$

(iii) :
$$ydx - (x + 2y^2)dy = 0$$

(iv) Solve:
$$ydx + (x - y^3)dy = 0$$

(v) Solve:
$$(x+2y^3)dy = ydx$$

(vi) Solve:
$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}} \right) \frac{dx}{dy} = 1, x \neq 0$$

4. Solve each of the following initial value problem:

(i)
$$(x - \sin y) dy + (\tan y) dx = 0$$
, $y(0) = 0$

(ii)
$$(1 + y^2)dx = (\tan^{-1}y - x)dy$$
, $y(0) = 0$

(iii)
$$ye^y dx = (y^3 + 2x e^y)dy$$
, $y(0) = 1$

(iii)
$$ye^y dx = (y^3 + 2x e^y)dy$$
, $y(0) = 1$ (iv) $\sqrt{1 - y^2} dx = (\sin^{-1} y - x)dy$, $y(0) = 0$

5. Solve: (i)
$$\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{(x^2 + 1)^2} = 0$$

5. Solve: (i)
$$\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{(x^2 + 1)^2} = 0$$
 (ii) $x \frac{dy}{dx} + y = x \log x$ (iii) $x \frac{dy}{dx} - y = (x - 1)e^x$

(iv)
$$\frac{dy}{dx} = y \tan x - 2 \sin x$$

(v)
$$(1+x^2)\frac{dy}{dx} + y \tan^{-1} x$$
 (vi)
$$\frac{dy}{dx} + y \tan x = \cos x$$

$$\frac{dy}{dx} + y \cot x = x^2 \cot x + 2x$$

$$\frac{dy}{dx} + y \cot x = x^{2} \cot x + 2x \qquad \frac{dy}{(viii)} + y \tan x = x^{2} \cos^{2} x \qquad (1 + x^{2}) \frac{dy}{dx} + y = e^{\tan^{-1}} x$$

(x)
$$x dy = (2y + 2x^4 + x^2) dx$$

$$(1+y^2) + (x - e^{\tan^{-1} y}) \frac{dy}{dx} = 0$$

$$y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0$$

(xiii)
$$y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0$$
 (xiii) $(2x - 10y^3) \frac{dy}{dx} + y = 0$ (xiv). (x + tan y) dy = sin 2y dx

(xv)
$$\frac{dy}{dx} = y \tan x - 2 \sin x$$
 (xvi) $\frac{dy}{dx} + y \cos x = \sin x \cos x$ (1+x²) $\frac{dy}{dx} - 2xy = (x^2 + 2)(x^2 + 1)$ (xvii)

$$(\sin x)\frac{dy}{dx} + y\cos x = 2\sin^2 x\cos x$$

$$(xix)^{2}(x^{2}-1)\frac{dy}{dx} + 2(x+2)y = 2(x+1)$$

$$x \frac{dy}{dx} + 2y = x \cos x$$
 (xxi) $\frac{dy}{dx} + 2y = xe^{4x}$ $(xxii)$ $x \frac{dy}{dx} - y = (x+1)e^{-x}, y(1) = 0$

$$(xxii)$$
 $x \frac{dy}{dx} - y = (x+1)e^{-x}, y(1) = 0$

(xiii)
$$(1 + y^2) dx + (x - e^{-tan^{-1}y}) dy = 0, y(0) = 0$$

(xiii)
$$(1 + y^2) dx + (x - e^{-tan^{-1}y}) dy = 0, y(0) = 0$$
 (xxvi) $\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y(0) = 1$

CBSEGuess.com

$$(xxy) x \frac{dy}{dx} + y = x \cos x + \sin x, y \left(\frac{\pi}{2}\right) = 1$$

$$\frac{dy}{dx} + y \cot x = 4x \cos ec x, y \left(\frac{\pi}{2}\right) = 0$$

$$\frac{dy}{dx} + 2y \tan x = \sin x; y = 0 \text{ when } x = \frac{\pi}{3}$$
(xxvii)

(xxviii)
$$\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2 \text{ whewn } x = \frac{\pi}{2}$$

OM SAI RAM

MATH-MAX

AJAY KAKKAR

9899333500

JAIGURU JI