

INDIAN SCHOOL, ALGHUBRA XII STD INORGANIC CHEMISTRY P block elements- WORK SHEET

1 ACCOUNT FOR THE FOLLOWING

- 1. $E^0 Tl^{3+}/Tl^+$ have positive value.
- 2. In (I) oxide is more stable than In (III) oxide.
- 3. Anhydrous AlCl₃ acts as a catalyst.
- 4. Group 13 elements form electron deficient compounds called Lewis acid.
- 5. Lewis acid character is BF₃< BCl₃<BBr₃<BI₃
- 6. Cryolite is added during the electrolysis of aluminium oxide.
- 7. AlCl₃ forms a dimer but not BCl₃.
- 8. AlCl₃ dissolves in excess of NaOH to give a clear solution.
- 9. PbCl₂ is more stable than PbCl₄
- 10. PbO₂ acts as an oxidising agent.
- 11. CO_2 is a gas while SiO_2 is a solid.
- 12. Silicon can not form graphite like structure.
- 13. Silicon forms silanes and not compounds of the type alkenes and alkynes.
- 14. CCl₄ can not be hydrolysed but SiCl₄ can be hydrolysed.
- 15. Silicon can form hexa coordinated compounds and not carbon.
- 16. $(SiF_6)^{2-}$ are known but not $(SiCl_6)^{2-}$.
- 17. Catenation property in group 14 decreases on going down the group.
- 18. N_2 is a gas while P_4 is a solid.
- 19. Nitrogen molecule is chemically inert.
- 20. Nitrogen do not show much of catenation.
- 21. PCl₅ in solid state exhibit ionic character.
- 22. PCl₃ and PCl₅ fumes in moist air.
- 23. All the five bonds in PCl₅ are not equivalent.
- 24. PCl₅ is more reactive and less stable than PCl₃
- 25. PCl₅ is known but not NCl₅.
- 26. Phosphoric acid is tri protic acid while phosphorus acid is diprotic.
- 27. H₃PO₂ is mono protic acid.
- 28. Basic character is NH₃>PH₃>AsH₃>SbH₃>BiH₃
- 29. Oxygen does not exhibit catenation but sulphur exhibit to a greater extent.
- 30. Oxygen molecule is a gas while sulphur is a solid.
- 31. SF₆ molecule can not be hydrolysed easily.
- 32. Sulphur in vapour state is paramagnetic,
- 33. Concentrated sulphuric acid acts as an oxidising agent.
- 34. Sulphuric acid is a dibasic acid.
- 35. H₂O (l) has higher boiling point than H₂S.

CBSEGuess.com

- 36. Water is a liquid while hydrogen sulphide is a gas at room temperature.
- 37. Hydrogen sulphide is a weak dibasic acid.
- 38. Acidic character is H₂O<H₂S<H₂Se< H₂Te
- 39. Thermal stability is CO₂>CS₂>CSe₂>CTe₂
- 40. Acidity of hydrogen halide is HI>HBr>HCl>HF.
- 41. HF has higher boiling point than HCl.
- 42. Boiling point HF>HI>HBr>HCl.
- 43. Electro negativity of group 16 elements decreases down the group.
- 44. Electro negativity of group 17 elements decreases down the group.
- 45. F₂ molecule has lower bond energy than Cl₂ molecule.
- 46. Chlorine has higher electron affinity than fluorine.
- 47. Inter halogen compounds are more reactive than halogens from which they are made.
- 48. Silicon and phosphorous can form hexa coordinated compounds.
- 49. Acidic character is HClO₄ >HClO₃ >HClO₂>HOCl
- 50. Catenation property of group 14 decreases on going down the group.
- 51. Red phosphorus is less reactive than white phosphorus.
- 52. Oxidising power of halogens decreases on going down the group.
- 53. HBr and HI can not be prepared by the reaction of metal bromide or iodide with concentrated H₂SO₄.
- 54. Oxides of chlorine are bleaching agents.
- 55. Noble gases are chemically unreactive.
- 56. Xe form compounds only with fluorine and oxygen.
- 57. Bartlet synthesized Xe(PtF₆) from the earlier known compound O₂ (PtF₆).
- 58. Xe does not form compounds like XeF, XeF₃, and XeF₅
- 59. SF₆ is known but not SH₆.
- 60. Phosphorus forms hexa coordinated compounds but not nitrogen.
- 61. Acidity HOCl>HOBr>HOI
- 62. Al becomes passive in conc HNO₃
- 63. Pb becomes unreactive on exposure to air.
- 64. Size of Ga is smaller than that of Al.
- 65. HF is least volatile while HCl is most volatile.
- 66. Sugar chars in concentrated sulphuric acid.
- 67. Xenon is the only noble gas known to form compounds.
- 68. Fluorine will never be the central atom in the inter halogen compounds
- 69. Bartlett synthesized first noble compound XePtF₆ from the knowledge of Earlier known compound O₂ PtF₆
- 2. Arrange the following in the increasing order of property mentioned against each set:
 - a) HF, HCl, HBr, HI- acidity
 - b) H₂O, H₂S, H₂Se,H₂Te- acidity
 - c) H₂O, H₂S, H₂Se,H₂Te boiling point

- d) HF, HCl, HBr, HI- volatility
- e) As₂O₃, Ga₂O₃, Ge₂O₃, ClO₂- acidity
- f) NH₃, PH₃, AsH₃, SbH₃, BiH₃-basicity
- g) MF, MCl, MBr, MI- Ionic character
- h) LiF, NaF, KF, RbF, CsF- Ionic character
- i) HOCl, HOBr, HOI- acidity
- j) HOCl, HOClO, HOClO₂, HOClO₃ acidity
- 3 Give the structures of the following compounds:
- 1) Diborane 2) aluminium chloride 3) boron tri chloride
- 4) SiF₄ 5) SiF₆²⁻ 6) ortho silicate 7) pyro silicate (Island structure)
 - 8) $Si_3O_9^{6-}$ 9) $Si_6O_{18}^{12-}$ (beryl) 10) linear chain silicate 11) $(Si_2O_5^{2-})_n$
 - 12) NH₃ 13) NF₃ 14) PCl₃ 15) PCl₅ 16) P₄O₆ (Phosphorus trioxide)
 - 17) P₄O₁₀ (Phosphorus pentoxide) 18) H₃PO₄ (Ortho phosphoric acid)
 - 19) H₃PO₃ (Phosphonic acid) 20) H₃PO₂ (Hypo phosphorous acid)
 - 21) H₄P₂O₆ (Hypo phosphoric acid) 22) Cyclic tri meta phosphoric acid
 - 23) Linear tri meta phosphoric acid 24) red phosphorus n) white phosphorus.
 - 25) SF₄ 26) SF₆ 27) SO₂(g) 28) SeO₂(s) 29) SO₃(s) 30)) SeO₃(s)
 - 31) Sulphuric Acid H₂SO₄ 32) Sulphorous Acid H₂SO₃
 - 33) Thio Sulphuric Acid H₂S₂O₃
 - 34) Peroxomono Sulphuric Acid H₂SO₅ 35) Peroxodi Sulphuric Acid H₂S₂O₈
 - 36) Dithionic Acid H₂S₂O₆ 37) Pyro Sulphuric Acid (Oleum) H₂S₂O₇ 38) S₆ 39) S₈
 - 40) OF₂ 41) Chloric(I) Acid 42) Chloric(III) Acid 43) Chloric(v) Acid
 - 44) Chloric(VII) Acid 45) IF₃ 46) IF₅ 47) IF₇ 48) ClF₂⁺ 49) BrF₂⁻ 50) ICl₄⁻
 - 51) IBr₂ 52) IF₆ 53)BrF₃ 54) XeF₂ 55) XeF₄ 56) XeF₆ 57) XeOF₄ 58) XeO₃
 - 4 Give the products and balance the following equations:
 - 1. LiH+ AlCl₃→
 - 2. $3 \text{ GaCl} \rightarrow$
 - 3. $Al_2O_3 + NaOH + H_2O \rightarrow$
 - 4. 1473K
 - 5. $Al(OH)_3 \rightarrow$
 - 6. Al+ NaOH+ $H_2O \rightarrow$
 - 7. Al+HCl+ H₂O
 - 8. TIOH+HCl→
 - 9. SiCl₄+ H₂O \rightarrow
 - 10. SnCl₄ +H₂O \rightarrow
 - 11. Sn+ HCl (conc) \rightarrow
 - 12. Sn+ HCl (g) \rightarrow
 - 13. $Fe^{3+} + Sn^{2+} \rightarrow$
 - 14. Pb(NO₃)₂+HCl \rightarrow
 - 15. $Pb(NO_3)_2 + KI \rightarrow$
 - 16. $SiO_2 + NaOH \rightarrow$

- 17. $PbO_2 + HNO_3 \rightarrow$
- 18. Sn+ $O_2 \rightarrow$
- 19. Sn + HNO₃ \rightarrow

Δ

20. $SnC_2O_4 \rightarrow$

Δ

- 21. PbCO₃ \rightarrow
- 22. PbO +O₂→
- 23. $Pb_3O_4 + HNO_3 \rightarrow$
- 24. $SiF_4 + HF \rightarrow$
- 25. Si +4OH⁻→
- 26. SiCl₄ +H₂→
- 27. SiHCl₃+H₂ \rightarrow
- 28. Sn +HCl(conc) \rightarrow
- 29. Sn+ $H_2SO_4(conc) \rightarrow$
- 30. Sn+KOH+ H_2O →
- 31. SnO+HNO₃ \rightarrow
- 32. Sn+Cl₂(excess) \rightarrow
- 33. PbS+ $O_2 \rightarrow$
- 34. $N_2(g) + H_2(g) \rightarrow$
- 35. $Ca_3P_2 + H_2O \rightarrow$
- 36. $P_4 + KOH + H_2O \rightarrow$
- 37. $Zn_3M_2 + HCl \rightarrow$
- 38. NaOCl + NH₃ \rightarrow
- 39. $P_4 + Cl_2 -- \rightarrow$
- 40. $P_4 + Cl_2 \longrightarrow$
- 41. (Excess)
- 42. h)PCl₃ + H₂O \rightarrow
- 43. i)PCl₃ + O₂ \rightarrow
- 44. j)PCl₅ + H₂O \rightarrow
- 45. k) $P_4 + O_2 \rightarrow$
- $46. l)P_4 + O_2 \rightarrow$

(excess)

- 47. $P_4O_6 + H_2O \rightarrow$
- 48. $P_4O_{10} + H_2O \rightarrow$
- 49. $Bi_2O_3 + HNO_3 -- \rightarrow$
- 50. $Ca_3(PO_4)_2 + SiO_2 + C \rightarrow$
- 51. FeS(s) + $H_2SO_4(aq.) \rightarrow$
- 52. FeS+ $H_3O^+ \rightarrow$
- 53. S + 3F_{2 (heat)} \rightarrow

```
54. 2S + Cl_{2 \text{ (heat)}} \rightarrow
55. Te + 2Cl<sub>2 (heat)</sub> \rightarrow
56. Te + 2I_2 \rightarrow TeI_4
57. SCl_2 + NaF_{(CH3CN, 350K)} \rightarrow
58. S + O_2 \rightarrow
59. SO_2(g) + O_2(g) \rightarrow
                           V<sub>2</sub>O<sub>5</sub> 720K 2Bar
60. H_2SO_4 + SO_3 \rightarrow
61. H_2S_2O_7 + H_2O \rightarrow
62. m) NaCl + H_2SO_4 \rightarrow
63. n) NaNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> \rightarrow
64. o) C_{12}H_{22}O_{11}(Sucrose) \rightarrow 12C + 11_2O
                                       con H<sub>2</sub>SO<sub>4</sub>
65. C + 2H<sub>2</sub>SO<sub>4</sub> \rightarrow
66. Cu + 2H_2SO_4 \rightarrow
67. a) F_2 + X^- \rightarrow
                                                 [X=Cl, Br, I]
68. b) Cl_2 + X^- \rightarrow
                                             [X=Br, I]
69. Br<sub>2</sub>+I^- \rightarrow
70. I_2+S_2O_3^{2-} \rightarrow
71. NaCl + H_2SO_4 \rightarrow
72. CaF_2 + H_2SO_4 \rightarrow
73. NaBr +H_3PO_4 \rightarrow
74. KI+H_3PO_4 \rightarrow
75. NaClO<sub>3</sub> + SO<sub>2</sub> \rightarrow
76. Cl_2 + H_2O \rightarrow
77. I_2 + N_2H_4 \rightarrow
78. I_2 + H_2S \rightarrow
79. NaClO<sub>3</sub> + SO<sub>2</sub> \rightarrow
80. Cl_2 + H_2O \rightarrow
81. Cl_2 + HgO + H_2O \rightarrow
82. NaOH + Cl_2 \rightarrow
83. NaOCl →
84. CaOCl<sub>2</sub>+HCl \rightarrow
85. Ba(ClO<sub>2</sub>)<sub>2</sub> +H<sub>2</sub>SO<sub>4</sub> \rightarrow
86. NaOCl →
87. Ba(ClO<sub>3</sub>)<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> \rightarrow
88. NaClO<sub>3</sub> →
89. Ba(ClO<sub>4</sub>)<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> \rightarrow
90. U + ClF<sub>3</sub> \rightarrow
```

```
91. MnO<sub>2</sub> + HCl \rightarrow
    92. KMnO<sub>4</sub> + HCl →
    93. NaBr + Cl<sub>2</sub> \rightarrow
    94. I⁻ + Cl<sub>2</sub> →
   100.\text{NaIO}_3 + \text{NaHSO}_3 \rightarrow
   101.\text{NaIO}_3 + \text{NaI} + \text{H}_2\text{SO}_4 \rightarrow
   102. IO_3^- + I^- + H^+ \rightarrow
   103.\text{NaCl} + \text{MnO}_2 + \text{H}_2\text{SO}_4 \rightarrow
   104.Xe(g)_{(Excess)} + F_2(g) \rightarrow
                                                            673K/7bar
                                               \rightarrow
   105. Xe(g) + 2F_2(g)
                                                           [1:5 ratio]
                                                573K/50-60bar
  106 \text{ Xe(g)} + 3F_2(g)
                                                                  [1:20 ratio]
                                          \rightarrow
 107 . XeF<sub>2</sub> + 2H<sub>2</sub>O \rightarrow
 108. XeF<sub>4</sub> + 12H<sub>2</sub>O →
 109 XeF<sub>6</sub> + 3H<sub>2</sub>O →
110. XeO_3 + OH^- \rightarrow
111. HXeO_4^- + OH^- \rightarrow
112. XeF_6 + H_2O \rightarrow
                                          (partial hydrolysis)
113. XeF_6 + 2H_2O \rightarrow
                                          (partial hydrolysis)
114.XeF_2 + PF_5 \rightarrow
115.XeF_4 + SbF_5 \rightarrow
                                                                             116.XeF<sub>6</sub> + MF \rightarrow
```

- 5. Explain why aluminium though electro positive finds extensive use as a structural material
- 6 Explain the extraction of Al from bauxite ore with the equations of the reactions involved.
- 7 Mention four uses of Al.
- 8. What are silicones? How is it prepared? Mention two uses of silicone.
- 9. How is a) Si extracted from sand? b) Sn from caseterrite? C) Pb from galena?
- 10. Give one example each of 2D sheet silicate and 3D framework silicate structure.
- 11. What are ampiboles? Give one example.
- 12. What type of cation replaces Al in alums?
- 13 How is LiAlH₄ prepared? Mention its important use
- 14. How is phosphorus extracted from rock phosphate? Write the equations of the reactions involved. Mention two uses of phosphorus and its compounds
- 15. Define catenation. Discuss catenation in group 14, 15 and 16.
- 16. What is allotropy? Discuss about the allotropes of phosphorus and sulphur.

CBSEGuess.com

- 17. How is fluorine obtained from KHF_2 ?
- 18 How is chlorine obtained commercially?
- 19 Write the equations of the reactions involved in the laboratory method of preparation of a) chlorine b) iodine.
- 20. Write the equations of the reactions involved in the preparation of a) HOCl b) HOClO c) HOClO2 d) HOClO3 e) NH₄ClO₄
- 21 What are inter halogen compounds? Give two examples.
- 22. Write the equations of the reactions involved in the preparation of sulphuric acid by contact process. Mention two uses of sulphuric acid.
- 23. How is H₂S prepared in laboratory? Mention its use in salt analysis.
- 24. Define catenation. Explain catenation with reference to group 14, 15, and group 16.
- 25 What is allotropy? Write notes on allotropes of P and S.
- 26. How will you prepare the following compounds from sulphur a) H_2S b) H_2SO_4 SCl_2 c) SCl_2 d) SF_6
- 27. With what neutral molecule ClO⁻ is iso electronic?
- 28. Give the formula of the noble gas species which is iso structural with a) ICl₄⁻ b) IBr₂- c) BrO₃⁻
