INDIAN SCHOOL, ALGHUBRA XII STD INORGANIC CHEMISTRY P block elements- WORK SHEET ## 1 ACCOUNT FOR THE FOLLOWING - 1. $E^0 Tl^{3+}/Tl^+$ have positive value. - 2. In (I) oxide is more stable than In (III) oxide. - 3. Anhydrous AlCl₃ acts as a catalyst. - 4. Group 13 elements form electron deficient compounds called Lewis acid. - 5. Lewis acid character is BF₃< BCl₃<BBr₃<BI₃ - 6. Cryolite is added during the electrolysis of aluminium oxide. - 7. AlCl₃ forms a dimer but not BCl₃. - 8. AlCl₃ dissolves in excess of NaOH to give a clear solution. - 9. PbCl₂ is more stable than PbCl₄ - 10. PbO₂ acts as an oxidising agent. - 11. CO_2 is a gas while SiO_2 is a solid. - 12. Silicon can not form graphite like structure. - 13. Silicon forms silanes and not compounds of the type alkenes and alkynes. - 14. CCl₄ can not be hydrolysed but SiCl₄ can be hydrolysed. - 15. Silicon can form hexa coordinated compounds and not carbon. - 16. $(SiF_6)^{2-}$ are known but not $(SiCl_6)^{2-}$. - 17. Catenation property in group 14 decreases on going down the group. - 18. N_2 is a gas while P_4 is a solid. - 19. Nitrogen molecule is chemically inert. - 20. Nitrogen do not show much of catenation. - 21. PCl₅ in solid state exhibit ionic character. - 22. PCl₃ and PCl₅ fumes in moist air. - 23. All the five bonds in PCl₅ are not equivalent. - 24. PCl₅ is more reactive and less stable than PCl₃ - 25. PCl₅ is known but not NCl₅. - 26. Phosphoric acid is tri protic acid while phosphorus acid is diprotic. - 27. H₃PO₂ is mono protic acid. - 28. Basic character is NH₃>PH₃>AsH₃>SbH₃>BiH₃ - 29. Oxygen does not exhibit catenation but sulphur exhibit to a greater extent. - 30. Oxygen molecule is a gas while sulphur is a solid. - 31. SF₆ molecule can not be hydrolysed easily. - 32. Sulphur in vapour state is paramagnetic, - 33. Concentrated sulphuric acid acts as an oxidising agent. - 34. Sulphuric acid is a dibasic acid. - 35. H₂O (l) has higher boiling point than H₂S. ----- ## CBSEGuess.com - 36. Water is a liquid while hydrogen sulphide is a gas at room temperature. - 37. Hydrogen sulphide is a weak dibasic acid. - 38. Acidic character is H₂O<H₂S<H₂Se< H₂Te - 39. Thermal stability is CO₂>CS₂>CSe₂>CTe₂ - 40. Acidity of hydrogen halide is HI>HBr>HCl>HF. - 41. HF has higher boiling point than HCl. - 42. Boiling point HF>HI>HBr>HCl. - 43. Electro negativity of group 16 elements decreases down the group. - 44. Electro negativity of group 17 elements decreases down the group. - 45. F₂ molecule has lower bond energy than Cl₂ molecule. - 46. Chlorine has higher electron affinity than fluorine. - 47. Inter halogen compounds are more reactive than halogens from which they are made. - 48. Silicon and phosphorous can form hexa coordinated compounds. - 49. Acidic character is HClO₄ >HClO₃ >HClO₂>HOCl - 50. Catenation property of group 14 decreases on going down the group. - 51. Red phosphorus is less reactive than white phosphorus. - 52. Oxidising power of halogens decreases on going down the group. - 53. HBr and HI can not be prepared by the reaction of metal bromide or iodide with concentrated H₂SO₄. - 54. Oxides of chlorine are bleaching agents. - 55. Noble gases are chemically unreactive. - 56. Xe form compounds only with fluorine and oxygen. - 57. Bartlet synthesized Xe(PtF₆) from the earlier known compound O₂ (PtF₆). - 58. Xe does not form compounds like XeF, XeF₃, and XeF₅ - 59. SF₆ is known but not SH₆. - 60. Phosphorus forms hexa coordinated compounds but not nitrogen. - 61. Acidity HOCl>HOBr>HOI - 62. Al becomes passive in conc HNO₃ - 63. Pb becomes unreactive on exposure to air. - 64. Size of Ga is smaller than that of Al. - 65. HF is least volatile while HCl is most volatile. - 66. Sugar chars in concentrated sulphuric acid. - 67. Xenon is the only noble gas known to form compounds. - 68. Fluorine will never be the central atom in the inter halogen compounds - 69. Bartlett synthesized first noble compound XePtF₆ from the knowledge of Earlier known compound O₂ PtF₆ - 2. Arrange the following in the increasing order of property mentioned against each set: - a) HF, HCl, HBr, HI- acidity - b) H₂O, H₂S, H₂Se,H₂Te- acidity - c) H₂O, H₂S, H₂Se,H₂Te boiling point ------ - d) HF, HCl, HBr, HI- volatility - e) As₂O₃, Ga₂O₃, Ge₂O₃, ClO₂- acidity - f) NH₃, PH₃, AsH₃, SbH₃, BiH₃-basicity - g) MF, MCl, MBr, MI- Ionic character - h) LiF, NaF, KF, RbF, CsF- Ionic character - i) HOCl, HOBr, HOI- acidity - j) HOCl, HOClO, HOClO₂, HOClO₃ acidity - 3 Give the structures of the following compounds: - 1) Diborane 2) aluminium chloride 3) boron tri chloride - 4) SiF₄ 5) SiF₆²⁻ 6) ortho silicate 7) pyro silicate (Island structure) - 8) $Si_3O_9^{6-}$ 9) $Si_6O_{18}^{12-}$ (beryl) 10) linear chain silicate 11) $(Si_2O_5^{2-})_n$ - 12) NH₃ 13) NF₃ 14) PCl₃ 15) PCl₅ 16) P₄O₆ (Phosphorus trioxide) - 17) P₄O₁₀ (Phosphorus pentoxide) 18) H₃PO₄ (Ortho phosphoric acid) - 19) H₃PO₃ (Phosphonic acid) 20) H₃PO₂ (Hypo phosphorous acid) - 21) H₄P₂O₆ (Hypo phosphoric acid) 22) Cyclic tri meta phosphoric acid - 23) Linear tri meta phosphoric acid 24) red phosphorus n) white phosphorus. - 25) SF₄ 26) SF₆ 27) SO₂(g) 28) SeO₂(s) 29) SO₃(s) 30)) SeO₃(s) - 31) Sulphuric Acid H₂SO₄ 32) Sulphorous Acid H₂SO₃ - 33) Thio Sulphuric Acid H₂S₂O₃ - 34) Peroxomono Sulphuric Acid H₂SO₅ 35) Peroxodi Sulphuric Acid H₂S₂O₈ - 36) Dithionic Acid H₂S₂O₆ 37) Pyro Sulphuric Acid (Oleum) H₂S₂O₇ 38) S₆ 39) S₈ - 40) OF₂ 41) Chloric(I) Acid 42) Chloric(III) Acid 43) Chloric(v) Acid - 44) Chloric(VII) Acid 45) IF₃ 46) IF₅ 47) IF₇ 48) ClF₂⁺ 49) BrF₂⁻ 50) ICl₄⁻ - 51) IBr₂ 52) IF₆ 53)BrF₃ 54) XeF₂ 55) XeF₄ 56) XeF₆ 57) XeOF₄ 58) XeO₃ - 4 Give the products and balance the following equations: - 1. LiH+ AlCl₃→ - 2. $3 \text{ GaCl} \rightarrow$ - 3. $Al_2O_3 + NaOH + H_2O \rightarrow$ - 4. 1473K - 5. $Al(OH)_3 \rightarrow$ - 6. Al+ NaOH+ $H_2O \rightarrow$ - 7. Al+HCl+ H₂O - 8. TIOH+HCl→ - 9. SiCl₄+ H₂O \rightarrow - 10. SnCl₄ +H₂O \rightarrow - 11. Sn+ HCl (conc) \rightarrow - 12. Sn+ HCl (g) \rightarrow - 13. $Fe^{3+} + Sn^{2+} \rightarrow$ - 14. Pb(NO₃)₂+HCl \rightarrow - 15. $Pb(NO_3)_2 + KI \rightarrow$ - 16. $SiO_2 + NaOH \rightarrow$ ______ - 17. $PbO_2 + HNO_3 \rightarrow$ - 18. Sn+ $O_2 \rightarrow$ - 19. Sn + HNO₃ \rightarrow Δ 20. $SnC_2O_4 \rightarrow$ Δ - 21. PbCO₃ \rightarrow - 22. PbO +O₂→ - 23. $Pb_3O_4 + HNO_3 \rightarrow$ - 24. $SiF_4 + HF \rightarrow$ - 25. Si +4OH⁻→ - 26. SiCl₄ +H₂→ - 27. SiHCl₃+H₂ \rightarrow - 28. Sn +HCl(conc) \rightarrow - 29. Sn+ $H_2SO_4(conc) \rightarrow$ - 30. Sn+KOH+ H_2O → - 31. SnO+HNO₃ \rightarrow - 32. Sn+Cl₂(excess) \rightarrow - 33. PbS+ $O_2 \rightarrow$ - 34. $N_2(g) + H_2(g) \rightarrow$ - 35. $Ca_3P_2 + H_2O \rightarrow$ - 36. $P_4 + KOH + H_2O \rightarrow$ - 37. $Zn_3M_2 + HCl \rightarrow$ - 38. NaOCl + NH₃ \rightarrow - 39. $P_4 + Cl_2 -- \rightarrow$ - 40. $P_4 + Cl_2 \longrightarrow$ - 41. (Excess) - 42. h)PCl₃ + H₂O \rightarrow - 43. i)PCl₃ + O₂ \rightarrow - 44. j)PCl₅ + H₂O \rightarrow - 45. k) $P_4 + O_2 \rightarrow$ - $46. l)P_4 + O_2 \rightarrow$ (excess) - 47. $P_4O_6 + H_2O \rightarrow$ - 48. $P_4O_{10} + H_2O \rightarrow$ - 49. $Bi_2O_3 + HNO_3 -- \rightarrow$ - 50. $Ca_3(PO_4)_2 + SiO_2 + C \rightarrow$ - 51. FeS(s) + $H_2SO_4(aq.) \rightarrow$ - 52. FeS+ $H_3O^+ \rightarrow$ - 53. S + 3F_{2 (heat)} \rightarrow ----- ``` 54. 2S + Cl_{2 \text{ (heat)}} \rightarrow 55. Te + 2Cl_{2 (heat)} \rightarrow 56. Te + 2I_2 \rightarrow TeI_4 57. SCl_2 + NaF_{(CH3CN, 350K)} \rightarrow 58. S + O_2 \rightarrow 59. SO_2(g) + O_2(g) \rightarrow V₂O₅ 720K 2Bar 60. H_2SO_4 + SO_3 \rightarrow 61. H_2S_2O_7 + H_2O \rightarrow 62. m) NaCl + H_2SO_4 \rightarrow 63. n) NaNO₃ + H₂SO₄ \rightarrow 64. o) C_{12}H_{22}O_{11}(Sucrose) \rightarrow 12C + 11_2O con H₂SO₄ 65. C + 2H₂SO₄ \rightarrow 66. Cu + 2H_2SO_4 \rightarrow 67. a) F_2 + X^- \rightarrow [X=Cl, Br, I] 68. b) Cl_2 + X^- \rightarrow [X=Br, I] 69. Br₂+I^- \rightarrow 70. I_2+S_2O_3^{2-} \rightarrow 71. NaCl + H_2SO_4 \rightarrow 72. CaF_2 + H_2SO_4 \rightarrow 73. NaBr +H_3PO_4 \rightarrow 74. KI+H_3PO_4 \rightarrow 75. NaClO₃ + SO₂ \rightarrow 76. Cl_2 + H_2O \rightarrow 77. I_2 + N_2H_4 \rightarrow 78. I_2 + H_2S \rightarrow 79. NaClO₃ + SO₂ \rightarrow 80. Cl_2 + H_2O \rightarrow 81. Cl_2 + HgO + H_2O \rightarrow 82. NaOH + Cl_2 \rightarrow 83. NaOCl → 84. CaOCl₂+HCl \rightarrow 85. Ba(ClO₂)₂ +H₂SO₄ \rightarrow 86. NaOCl → 87. Ba(ClO₃)₂ + H₂SO₄ \rightarrow 88. NaClO₃ → 89. Ba(ClO₄)₂ + H₂SO₄ \rightarrow 90. U + ClF₃ \rightarrow ``` ______ ``` 91. MnO₂ + HCl \rightarrow 92. KMnO₄ + HCl → 93. NaBr + Cl₂ \rightarrow 94. I⁻ + Cl₂ → 100.\text{NaIO}_3 + \text{NaHSO}_3 \rightarrow 101.\text{NaIO}_3 + \text{NaI} + \text{H}_2\text{SO}_4 \rightarrow 102. IO_3^- + I^- + H^+ \rightarrow 103.\text{NaCl} + \text{MnO}_2 + \text{H}_2\text{SO}_4 \rightarrow 104.Xe(g)_{(Excess)} + F_2(g) \rightarrow 673K/7bar \rightarrow 105. Xe(g) + 2F_2(g) [1:5 ratio] 573K/50-60bar 106 \text{ Xe(g)} + 3F_2(g) [1:20 ratio] \rightarrow 107 . XeF₂ + 2H₂O \rightarrow 108. XeF₄ + 12H₂O → 109 XeF₆ + 3H₂O → 110. XeO_3 + OH^- \rightarrow 111. HXeO_4^- + OH^- \rightarrow 112. XeF_6 + H_2O \rightarrow (partial hydrolysis) 113. XeF_6 + 2H_2O \rightarrow (partial hydrolysis) 114.XeF_2 + PF_5 \rightarrow 115.XeF_4 + SbF_5 \rightarrow 116.XeF₆ + MF \rightarrow ``` - 5. Explain why aluminium though electro positive finds extensive use as a structural material - 6 Explain the extraction of Al from bauxite ore with the equations of the reactions involved. - 7 Mention four uses of Al. - 8. What are silicones? How is it prepared? Mention two uses of silicone. - 9. How is a) Si extracted from sand? b) Sn from caseterrite? C) Pb from galena? - 10. Give one example each of 2D sheet silicate and 3D framework silicate structure. - 11. What are ampiboles? Give one example. - 12. What type of cation replaces Al in alums? - 13 How is LiAlH₄ prepared? Mention its important use - 14. How is phosphorus extracted from rock phosphate? Write the equations of the reactions involved. Mention two uses of phosphorus and its compounds - 15. Define catenation. Discuss catenation in group 14, 15 and 16. - 16. What is allotropy? Discuss about the allotropes of phosphorus and sulphur. ------ ## CBSEGuess.com - 17. How is fluorine obtained from KHF_2 ? - 18 How is chlorine obtained commercially? - 19 Write the equations of the reactions involved in the laboratory method of preparation of a) chlorine b) iodine. - 20. Write the equations of the reactions involved in the preparation of a) HOCl b) HOClO c) HOClO2 d) HOClO3 e) NH₄ClO₄ - 21 What are inter halogen compounds? Give two examples. - 22. Write the equations of the reactions involved in the preparation of sulphuric acid by contact process. Mention two uses of sulphuric acid. - 23. How is H₂S prepared in laboratory? Mention its use in salt analysis. - 24. Define catenation. Explain catenation with reference to group 14, 15, and group 16. - 25 What is allotropy? Write notes on allotropes of P and S. - 26. How will you prepare the following compounds from sulphur a) H_2S b) H_2SO_4 SCl_2 c) SCl_2 d) SF_6 - 27. With what neutral molecule ClO⁻ is iso electronic? - 28. Give the formula of the noble gas species which is iso structural with a) ICl₄⁻ b) IBr₂- c) BrO₃⁻ -----