## HALF-YEARLY EXAMINATION-2010-2011 CHEMISTRY (Theory)

## **CLASS - XII**

Time: Three Hours Max. Marks: 70 **General Instructions** 1. All questions are compulsory. 2. Question nos. 1 to 8 are very short answer questions and carry 1 mark each. 3. Question nos. 9 to 18 are short answer questions and carry 2 marks each. 4. Question nos. 19 to 27 are also short answer questions and carry 3 marks each 5. Question nos. 28 to 30 are long answer questions and carry 5 marks each 6. Use log tables if necessary, use of calculators is not allowed. 1. What is the expected van't Hoff factor for K<sub>3</sub> [Fe (CN) <sub>6</sub>]. 1 2. Identify the reaction order from the rate constants.  $K = 2.3 \times 10^{-5} \text{ L mol}^{-1} \text{ s}^{-1}$ 3. Explain why Fe<sub>3</sub>O<sub>4</sub> is ferrimagnetic at room temperature and becomes paramagnetic at 850 K. 1 4. An ore sample of galena (PbS) is contaminated with zinc blende (ZnS). Name one chemical which can be used to concentrate galena selectively by froth floatation method. 1  $5.\Lambda^{\circ}_{m}$  for NaCl, HCl and NaAc are 126.4, 425.9 and 91.0 S cm<sup>2</sup> mol<sup>-1</sup> respectively. Calculate  $\Lambda^{\circ}_{m}$  for HAc. 1 6. Give plausible explanation why Cyclohexanone forms cyanohydrin in good yield but 2,2,6-trimethylcyclohexanone does not. 1 7. Write the IUPAC name of: 1 8. Predict the products of electrolysis of the dilute solution of H<sub>2</sub>SO<sub>4</sub>with platinum electrodes. 9. The initial concentration of  $N_2O_5$  in the following first order reaction  $N_2O_5$   $_{(g)} \rightarrow 2$   $NO_2$   $_{(g)} + 1/2O_2$   $_{(g)}$  was  $1.24 \times 10^{-2}$  mol  $L^{-1}$  at 318 K. The concentration of  $N_2O_5$  after 60 minutes was  $0.20 \times 10^{-2}$  mol  $L^{-1}$ . Calculate the rate constant of the reaction at 318 K. 2 10. The value of  $G_{f}^{0}$  for formation of  $Cr_{2}O_{3}$  is -540 kJ mol<sup>-1</sup> and that of  $Al_{2}O_{3}$  is -827 kJ mol<sup>-1</sup> ls the reduction of Cr<sub>2</sub>O<sub>3</sub> possible with Al? 2 11. Write the names of the reagents and equations in the conversion of (i) Phenol to salicylaldehyde (ii) Anisole to p-methoxyacetophenone 2 12. Write balanced chemical equations for the following reactions: 2 (a)  $XeF_2 + PF_5 \rightarrow$ (b)  $P_4 + NaOH + H_2O \rightarrow$ 13. Account for the following: 2 (i) Alkaline medium inhibits the rusting of iron. (ii) Iron does not rust even if the zinc coating is broken in a galvanized iron pipe.  $Cu_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Cu^{2+}_{(aq)} + 2Ag_{(s)}$ ;  $E^{0}_{cell} = 0.46$ Calculate the equilibrium constant of the reaction:

14. Consider the adsorption isotherms given below and interpret the variation in the extent of adsorption (x/m) when



- (i) temperature increases at constant pressure
- (ii) pressure increases at constant temperature
- 15. Account for the following:
- (a) Aniline does not undergo Friedel Crafts alkylation
- (b) Although NH2 group is an ortho and para-directing group, nitration of aniline gives alongwith ortho & para derivatives meta-derivative also.
- 16. In the following pairs of halogen compounds, which would undergo SN<sup>2</sup> reaction faster? (i)

2

2

2

2

2

3

3

$$\sim$$
I and  $\sim$ C

- 17. Show how would you synthesise the following alcohols from appropriate alkenes?
  - $CH_3$



- 18. Give simple chemical tests to distinguish between the following pairs of compounds.
- (i) Propanal and Propanone
- (iii) Ethylamine and aniline
- 19. CsCl forms a bcc lattice Cs and Cl ions are in contact along the body diagonal of the cell. The length of the side of the unit cell is 412pm and Cl has a radius 181pm. Calculate the radius of Cs<sup>+</sup> ion. Also calculate the distance of closest approach between Cs<sup>+</sup> and Cl<sup>-</sup>.
- 20. Write the Nernst equation and calculate the e.m.f. of the following cell at 298 K:

Cu (s) | Cu<sup>2+</sup> (0.130 M) || Ag<sup>+</sup> (1.00 × 10<sup>-4</sup> M) | Ag(s) Given: E°Cu<sup>2+</sup>/Cu = + 0.34 V and E°Ag<sup>+</sup>/Ag = + 0.80 V.

- 21. Explain the following terms:
  - (i) Peptisation
  - (ii) Electrophoresis
  - (iii) Hardy-Schulze rule

OR

Explain the following terms:

- (i) Tyndall effect
- (ii) Shape-selective catalysis
- (iii) Coagulation

22. The following results have been obtained during the kinetic studies of the reaction:

$$2A + B \rightarrow C + D$$

| Experiment | [A]/mol L <sup>-1</sup> | [B]/mol L <sup>-1</sup> | Initial rate of formation<br>of D/mol L <sup>-1</sup> min <sup>-1</sup> |
|------------|-------------------------|-------------------------|-------------------------------------------------------------------------|
| I          | 0.1                     | 0.1                     | 6.0 × 10 <sup>-3</sup>                                                  |
| II         | 0.3                     | 0.2                     | $7.2 \times 10^{-2}$                                                    |
| III        | 0.3                     | 0.4                     | $2.88 \times 10^{-1}$                                                   |
| IV         | 0.4                     | 0.1                     | 2.40 × 10 <sup>-2</sup>                                                 |

Determine the rate law and the rate constant for the reaction.

23. Explain the various steps involved in the extraction of copper from its sulphide ore?

3

24. (a)Calculate the overall complex dissociation equilibrium constant for the [Cu (NH)  $_3$ ]  $^{2+}$  ion, given that  $\beta_{\square}$  for this complex is  $2.1 \times 10^{13}$ .

1

3

(b) A solution of [Ni ( $H_2O$ )  $_6$ ]<sup>2+</sup> is green but a solution of [Ni (CN)  $_4$ ]<sup>2-</sup> is colourless. Explain.

1

(c)Write the name of linkage isomer of [Co(ONO)(NH<sub>3</sub>)<sub>5</sub>]<sup>2+</sup>

1

25. (a)Why doesR<sub>3</sub>P=Oexist but R<sub>3</sub>N=O doesnot (R= alkyl group)

1

(c) Explain the acidity of oxo acid of chlorine is HOCI < HOCIO < HOCIO2 < HOCIO3

1

(b) Draw the structures of the following species:

1

(i) PCI<sub>5</sub>

- (ii) XeF<sub>4</sub>
- 26. Identify A, B, C, D, E, and R<sup>1</sup> in the following:

3

(i)

$$\longrightarrow$$
 Br + Mg  $\xrightarrow{\text{dry ether}}$  A  $\xrightarrow{\text{H}_2\text{O}}$  B

- (ii) Complete and name the following reactions:
  - (a)  $RNH_2 + CHCI_3 + 3KOH \rightarrow$
  - (b) RCONH<sub>2</sub> + Br<sub>2</sub> + 4NaOH  $\rightarrow$
- 27. Arrange the following in the order of property indicated for each set:

3

- (i) F<sub>2</sub>, Cl<sub>2</sub>, Br<sub>2</sub>, I<sub>2</sub> increasing bond dissociation enthalpy.
- (ii) HF, HCl, HBr, HI increasing acid strength.
- (iii) NH<sub>3</sub>, PH<sub>3</sub>, AsH<sub>3</sub>, SbH<sub>3</sub>, BiH<sub>3</sub> increasing base strength.
- 28. (a) Why is that orange solution of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> turns yellow on adding NaOH?
- (b) Explain:
- (i) Why do transition metals act as catalyst?
- (ii) Zr and Hf have identical sizes.

| PREPARED BY MR. AMULYA KUMAR SAMAL, PGT (CHEMISTRY), KENDRIYA VIDYALAYA, KHANAPARA, PH.NO-09706422596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |
| (iii) Why is Ni <sup>2+</sup> more stable than Pt <sup>2+</sup> where as Pt <sup>4+</sup> is more stable than Ni <sup>4+</sup> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |  |  |  |
| (iv) Mn (II) shows maximum paramagnetic character amongst the divalent ions of the first transition series.  OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |
| <ul> <li>(a) In the titration of FeSO<sub>4</sub> with KMnO<sub>4</sub> in the acidic medium, why is dil H<sub>2</sub>SO<sub>4</sub> used instead of dil HCI?</li> <li>(b) Give reasons:</li> <li>(i) Why do transition metals ions have high enthalpy of hydration?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |
| <ul> <li>(ii) Ce<sup>4+</sup> is used as an oxidizing agent in volumetric analysis.</li> <li>(iii) Transition metals form a number of interstitial compounds.</li> <li>(iv) Zn<sup>2+</sup> salts are white while Cu<sup>2+</sup> salts are blue.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |
| <ul><li>29. (a) . Describe the mechanism of the formation of diethyl ether from ethanol in the presence of concentrated sulphuricacid.</li><li>b. Write one chemical equation each to exemplify the following reactions :</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |
| (i) Aldol condensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |  |  |
| (ii) Hell-Volhard-Zelinsky reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |
| c. Although phenoxide ion has more number of resonating structures than carboxylate ion, carboxylic acid is a stronger acid than phenol. Why?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |
| a.Describe the mechanism of the formation of ethene from ethanol in the presence of concentrated sulphuricacid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |
| h Maite and abording a subting a subting a subting a subting and the subting a subting |   |  |  |  |
| b. Write one chemical equation each to exemplify the following reactions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |  |  |
| (i) Cannizzaro's reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |  |  |
| (ii) Rosenmund reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |  |  |  |
| c. Arrange the following compounds in increasing order of their acid strength:  Benzoic acid, 4-Nitrobenzoic acid, 3, 4-Dinitrobenzoic acid, 4-Methoxybenzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |  |
| 30. a. (i) Why is CaCl <sub>2</sub> used to remove snow on roads?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |  |  |  |
| (ii) When fruits and vegetables are dried and placed in water, they slowly swell and return to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |
| original shape, why?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |  |  |  |
| (b) Two elements A and B form compounds having molecular formulae AB <sub>2</sub> and AB <sub>4</sub> . When dissolved in 20 g of benzene, 1 g of AB <sub>2</sub> lowers the freezing point by 2.3 K, whereas 1 g of AB <sub>4</sub> lowers it by 1.3 K. The molar depression constant for benzene is 5.1 K kg mol <sup>-1</sup> . Calculate the atomic masses of A and B.  OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 |  |  |  |
| a. (i) State Henry's law and mention one important application?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |  |  |  |
| (ii) What type of deviation from ideal behavior will be shown by a solution of cyclohexane and ethanol and why?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |
| b. The boiling point of benzene is 353.23 K. When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |  |
| boiling point is raised to 354.11 K. Calculate the molar mass of the solute. $K_b$ for benzene is 2.53 K kg mol <sup>-1.</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |