HALF-YEARLY EXAMINATION-2010-2011 CHEMISTRY (Theory) ## **CLASS - XII** Time: Three Hours Max. Marks: 70 **General Instructions** 1. All questions are compulsory. 2. Question nos. 1 to 8 are very short answer questions and carry 1 mark each. 3. Question nos. 9 to 18 are short answer questions and carry 2 marks each. 4. Question nos. 19 to 27 are also short answer questions and carry 3 marks each 5. Question nos. 28 to 30 are long answer questions and carry 5 marks each 6. Use log tables if necessary, use of calculators is not allowed. 1. What is the expected van't Hoff factor for K₃ [Fe (CN) ₆]. 1 2. Identify the reaction order from the rate constants. $K = 2.3 \times 10^{-5} \text{ L mol}^{-1} \text{ s}^{-1}$ 3. Explain why Fe₃O₄ is ferrimagnetic at room temperature and becomes paramagnetic at 850 K. 1 4. An ore sample of galena (PbS) is contaminated with zinc blende (ZnS). Name one chemical which can be used to concentrate galena selectively by froth floatation method. 1 $5.\Lambda^{\circ}_{m}$ for NaCl, HCl and NaAc are 126.4, 425.9 and 91.0 S cm² mol⁻¹ respectively. Calculate Λ°_{m} for HAc. 1 6. Give plausible explanation why Cyclohexanone forms cyanohydrin in good yield but 2,2,6-trimethylcyclohexanone does not. 1 7. Write the IUPAC name of: 1 8. Predict the products of electrolysis of the dilute solution of H₂SO₄with platinum electrodes. 9. The initial concentration of N_2O_5 in the following first order reaction N_2O_5 $_{(g)} \rightarrow 2$ NO_2 $_{(g)} + 1/2O_2$ $_{(g)}$ was 1.24×10^{-2} mol L^{-1} at 318 K. The concentration of N_2O_5 after 60 minutes was 0.20×10^{-2} mol L^{-1} . Calculate the rate constant of the reaction at 318 K. 2 10. The value of G_{f}^{0} for formation of $Cr_{2}O_{3}$ is -540 kJ mol⁻¹ and that of $Al_{2}O_{3}$ is -827 kJ mol⁻¹ ls the reduction of Cr₂O₃ possible with Al? 2 11. Write the names of the reagents and equations in the conversion of (i) Phenol to salicylaldehyde (ii) Anisole to p-methoxyacetophenone 2 12. Write balanced chemical equations for the following reactions: 2 (a) $XeF_2 + PF_5 \rightarrow$ (b) $P_4 + NaOH + H_2O \rightarrow$ 13. Account for the following: 2 (i) Alkaline medium inhibits the rusting of iron. (ii) Iron does not rust even if the zinc coating is broken in a galvanized iron pipe. $Cu_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Cu^{2+}_{(aq)} + 2Ag_{(s)}$; $E^{0}_{cell} = 0.46$ Calculate the equilibrium constant of the reaction: 14. Consider the adsorption isotherms given below and interpret the variation in the extent of adsorption (x/m) when - (i) temperature increases at constant pressure - (ii) pressure increases at constant temperature - 15. Account for the following: - (a) Aniline does not undergo Friedel Crafts alkylation - (b) Although NH2 group is an ortho and para-directing group, nitration of aniline gives alongwith ortho & para derivatives meta-derivative also. - 16. In the following pairs of halogen compounds, which would undergo SN² reaction faster? (i) 2 2 2 2 2 3 3 $$\sim$$ I and \sim C - 17. Show how would you synthesise the following alcohols from appropriate alkenes? - CH_3 - 18. Give simple chemical tests to distinguish between the following pairs of compounds. - (i) Propanal and Propanone - (iii) Ethylamine and aniline - 19. CsCl forms a bcc lattice Cs and Cl ions are in contact along the body diagonal of the cell. The length of the side of the unit cell is 412pm and Cl has a radius 181pm. Calculate the radius of Cs⁺ ion. Also calculate the distance of closest approach between Cs⁺ and Cl⁻. - 20. Write the Nernst equation and calculate the e.m.f. of the following cell at 298 K: Cu (s) | Cu²⁺ (0.130 M) || Ag⁺ (1.00 × 10⁻⁴ M) | Ag(s) Given: E°Cu²⁺/Cu = + 0.34 V and E°Ag⁺/Ag = + 0.80 V. - 21. Explain the following terms: - (i) Peptisation - (ii) Electrophoresis - (iii) Hardy-Schulze rule OR Explain the following terms: - (i) Tyndall effect - (ii) Shape-selective catalysis - (iii) Coagulation 22. The following results have been obtained during the kinetic studies of the reaction: $$2A + B \rightarrow C + D$$ | Experiment | [A]/mol L ⁻¹ | [B]/mol L ⁻¹ | Initial rate of formation
of D/mol L ⁻¹ min ⁻¹ | |------------|-------------------------|-------------------------|---| | I | 0.1 | 0.1 | 6.0 × 10 ⁻³ | | II | 0.3 | 0.2 | 7.2×10^{-2} | | III | 0.3 | 0.4 | 2.88×10^{-1} | | IV | 0.4 | 0.1 | 2.40 × 10 ⁻² | Determine the rate law and the rate constant for the reaction. 23. Explain the various steps involved in the extraction of copper from its sulphide ore? 3 24. (a)Calculate the overall complex dissociation equilibrium constant for the [Cu (NH) $_3$] $^{2+}$ ion, given that β_{\square} for this complex is 2.1×10^{13} . 1 3 (b) A solution of [Ni (H_2O) $_6$]²⁺ is green but a solution of [Ni (CN) $_4$]²⁻ is colourless. Explain. 1 (c)Write the name of linkage isomer of [Co(ONO)(NH₃)₅]²⁺ 1 25. (a)Why doesR₃P=Oexist but R₃N=O doesnot (R= alkyl group) 1 (c) Explain the acidity of oxo acid of chlorine is HOCI < HOCIO < HOCIO2 < HOCIO3 1 (b) Draw the structures of the following species: 1 (i) PCI₅ - (ii) XeF₄ - 26. Identify A, B, C, D, E, and R¹ in the following: 3 (i) $$\longrightarrow$$ Br + Mg $\xrightarrow{\text{dry ether}}$ A $\xrightarrow{\text{H}_2\text{O}}$ B - (ii) Complete and name the following reactions: - (a) $RNH_2 + CHCI_3 + 3KOH \rightarrow$ - (b) RCONH₂ + Br₂ + 4NaOH \rightarrow - 27. Arrange the following in the order of property indicated for each set: 3 - (i) F₂, Cl₂, Br₂, I₂ increasing bond dissociation enthalpy. - (ii) HF, HCl, HBr, HI increasing acid strength. - (iii) NH₃, PH₃, AsH₃, SbH₃, BiH₃ increasing base strength. - 28. (a) Why is that orange solution of K₂Cr₂O₇ turns yellow on adding NaOH? - (b) Explain: - (i) Why do transition metals act as catalyst? - (ii) Zr and Hf have identical sizes. | PREPARED BY MR. AMULYA KUMAR SAMAL, PGT (CHEMISTRY), KENDRIYA VIDYALAYA, KHANAPARA, PH.NO-09706422596 | | | | | |--|---|--|--|--| | | | | | | | (iii) Why is Ni ²⁺ more stable than Pt ²⁺ where as Pt ⁴⁺ is more stable than Ni ⁴⁺ ? | | | | | | (iv) Mn (II) shows maximum paramagnetic character amongst the divalent ions of the first transition series. OR | | | | | | (a) In the titration of FeSO₄ with KMnO₄ in the acidic medium, why is dil H₂SO₄ used instead of dil HCI? (b) Give reasons: (i) Why do transition metals ions have high enthalpy of hydration? | | | | | | (ii) Ce⁴⁺ is used as an oxidizing agent in volumetric analysis. (iii) Transition metals form a number of interstitial compounds. (iv) Zn²⁺ salts are white while Cu²⁺ salts are blue. | | | | | | 29. (a) . Describe the mechanism of the formation of diethyl ether from ethanol in the presence of concentrated sulphuricacid.b. Write one chemical equation each to exemplify the following reactions : | | | | | | (i) Aldol condensation | | | | | | (ii) Hell-Volhard-Zelinsky reaction | | | | | | c. Although phenoxide ion has more number of resonating structures than carboxylate ion, carboxylic acid is a stronger acid than phenol. Why? | | | | | | OR | | | | | | | | | | | | a.Describe the mechanism of the formation of ethene from ethanol in the presence of concentrated sulphuricacid. | | | | | | h Maite and abording a subting a subting a subting a subting and the subting a | | | | | | b. Write one chemical equation each to exemplify the following reactions: | | | | | | (i) Cannizzaro's reaction | | | | | | (ii) Rosenmund reduction | | | | | | c. Arrange the following compounds in increasing order of their acid strength: Benzoic acid, 4-Nitrobenzoic acid, 3, 4-Dinitrobenzoic acid, 4-Methoxybenzoic acid | | | | | | 30. a. (i) Why is CaCl ₂ used to remove snow on roads? | 1 | | | | | (ii) When fruits and vegetables are dried and placed in water, they slowly swell and return to | | | | | | original shape, why? | | | | | | (b) Two elements A and B form compounds having molecular formulae AB ₂ and AB ₄ . When dissolved in 20 g of benzene, 1 g of AB ₂ lowers the freezing point by 2.3 K, whereas 1 g of AB ₄ lowers it by 1.3 K. The molar depression constant for benzene is 5.1 K kg mol ⁻¹ . Calculate the atomic masses of A and B. OR | 3 | | | | | a. (i) State Henry's law and mention one important application? | 1 | | | | | (ii) What type of deviation from ideal behavior will be shown by a solution of cyclohexane and ethanol and why? | | | | | | b. The boiling point of benzene is 353.23 K. When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the | | | | | | boiling point is raised to 354.11 K. Calculate the molar mass of the solute. K_b for benzene is 2.53 K kg mol ^{-1.} | | | | | | | | | | |