

EQUILIBRIUM CLASSES SHAHJAHANPUR SUBJECT-CHEMISTRY-CBSE 2015

CLASS- XII TIME- 3Hrs. MM. - 70

General Instructions:

- 1. All questions are compulsory.
- 2. Question Nos. 1 to 5 are very short answer questions and carry 1 mark each.
- 3. Question Nos. 6 to 10 are short answer questions and carry 2 mark each.
- 4. Question Nos. 11 to 22 are short answer questions and carry 3 mark each.
- 5. Question Nos. 23 carry 4 mark each
- 6. Question Nos. 24 to 26 are long answer questions and carry 5 mark each.
- 7. Use log tables if necessary, use of calculators is not allowed
- Q1) Define peptization
- Q2) Write the IUPAC name

- Q3) Write the balanced equation for complete hydrolysis of XeF₆
- Q4) What are the physical states of dispersed phase and dispersion medium of froth?
- Q5) What is the Van't Hoff factor for a compound which undergoes tetramerization in an organic solvent?
- Q6) What changes occur in the nature of egg proteins on boiling?
- Q7) What is fuel cell. Write Chemical equations of cell.
- Q8) Analysis shows that Nickel Oxide has formula Fe_{0.96} O_{1.00}. What fraction of Nickel exist as Fe²⁺ and Fe³⁺ ions?
- Q9) Account for the following:
 - (a) Aniline does not undergo Friedel Crafts alkylation
 - (b) Although NH₂ group is an ortho and para-directing group, nitration of aniline gives alongwith ortho & paraderivatives
 - meta-derivative also.
- Q10) Two elements A and B forms compound AB₂ and AB₄. When dissolved in 20g of Benzene (C₆H₆), 1g of AB₂ lowers the freezing point by 2.3K where as 1.0g of AB₄ lowers it by 1.3K. The molar depression constant for benzene is 5.1Kkg mol⁻¹. Calculate atomic moss of A and B.
- Q11) Write names of monomer/s of the following polymers and classify them as addition or condensation polymers.
 - (a) Teflon
 - (b) Bakelite

CBSFGuess.com

- Q12) The resistance of a conductivity cell containing 0.001M Kcl solution at 298K is 1500 Ω . What is the cell constant if conductivity of 0.001M Kcl solution at 298K is 0.146x10-3 8cm-1.
- Show that in a first order reaction time required for completion of 99% is 10 times of half of the Q13) reaction.
- Q14) Explain:-
- i) Electrophoresis
- ii) Coagulation
- Write the difference between zone and vapour phase refining with their principle used. Q15)
- Draw any two structure of -Q16)
 - (HPO₃)

- (ii) BrF₃
- Q17) The decomposition of hydrocarbon follows the eqⁿ

$$K = (4.5 \times 10^{11} \text{ s}^{-1})_{e^{-28000 \text{k/T}}}$$

Calculate E₂

Q18)How much electricity in Faraday is required to produce

- i). 20.0 g of Ca from molten Ca Cl₂.
- ii). 40.0 g of Al form molten Al₂ O₃.
- What is chelating ligends? Draw structure of tetradentate ligand Q19)

Why explain

- NH₃.is more basic than PH₃ i)
- ii) Xe forms compounds with fluorine & oxygen only

 PH_3

- Ncl₅ does not exist but NCl₃ exist iii)
- Q20) Arrange-
 - H₂O,H₂S,H₂Se,H₂Te i)

(Increasing acidic character)

ii) NH₃,

AsH₃,

BiH₃

(Increasing basic character)

How HNO₃ is manufactured by Ostwald process. Write favorable condition with reaction.

Write chemical reactions perform during auto reduction. Q21)

Complete following reaction-

- MnO_4 +
- Fe²⁺

- Cr₂O₇-- +
- Fe²⁺

- Q22) Explain any five-
 - Lanthanoids can not be separated easily i)
 - ii) NH₂.group is orho & para directing

www.cbseguess.com

CBSEGuess.com

iii) Zwitter ion is amphoteric in nature

Q23 Kashish made a model of the unit cell of diamond. It resembled the unit cell of ZnS. If the unit cell of ZnS has 4 units of ZnS per unit cell. It has the same packing efficiency as ZnS. But diamond is the hardest known substance.

- a. What is the number of atoms of carbon per unit cell of diamond?
- b. Why?
- c. What is the value that Kashish can derive from these facts?

Q24 $K_4[Fe(CN)_4]$ is diamagnetic while $K_3[Fe(CN)_4]$ is paramagnetic Why?

OR

The rate of Rⁿ quadruples when the temperature change from 293K to 313 K.

Calculate the energy of activation of Rⁿ assuming that it does not change with temperature.

Q25) Write the Nernst equation and emf of given cell at 298 K.

$$Mg \left| Mg_{(0.001M)}^{2+} \right| \left| Cu_{(0.0001M)}^{2+} \right| Cu_{,\circ_{\text{CU}}^{2+}} = 0.34 \text{V.E}^{\circ} \text{Mg}^{2+} / \text{Mg} = -2.36 \text{ V.}$$

OR.

- (a) Complete the following chemical equations for reactions:
 - i) MnO_4 (ag) + $S_2O_3^{2}$ (ag)+ H_2OC^+ (1) \rightarrow
 - ii) $Cr_2O_7(ag) + H_2S(g) + H^+(ag)$
- (b) Give an explanation for each of the following observations:
 - i) The gradual decrease in size (actinoid contraction) from element to element is greater among theactinoids that among the lanthanoids (lanthanoid contraction)
 - ii) The greatest number of oxidation states are exhibited by the members in the middle of transition series.
 - With the same d-orbital configuration (d⁴) Cr²⁺ ion is reading agent but Mn³⁺ is an oxidizing agent.
- 26) In a pseudo first order hydrolysis of ester in water, the following results were obtained.

t/s	0	30	60	90
[Ester]/mol L ⁻¹	0.55	0.31	0.71	0.085

www.cbseguess.com

- i). Calculate the average rate of Rⁿ b/w the time interval 30 to 60 second.
- ii). Calculate the pseudo first order rate constant for hydrolysis of ester.

DR. ANUJ SHARMA

MSC(Org. chem.), B.Ed, M.Ed, M.PHIL (Chem), Ph.d (org.chem)

EQUILIBRIUM CLASSES

OUR AIM IS TO GIVE RIGHT PATH TOWARDS SUCCESS CONTACT 09415573342, equilibrium classes@gmail.com
Website—www.equilibrium classes.com

