

KJB SCIENCE SCHOOL

A PREMIER INSTITUTE OF EDUCATION PH: 9412161447, 9639017435, 9259363937

PRACTICE SHEET:1 [2014-15]

CLASS – XII [Chemistry]

CHAPTER ->

p- BLOCK ELEMENTS

Sharad Fauzdar 99% {TOPPER OF AIR FORCE SCHOOL-2014}

Pranil Mittal 99% {TOPPER OF SIMPKINS SCHOOL-2014}

Pushpendra-98% [K.M. public school] Sandeep Sharma -98%[K.M. public school] Surjeet -98% [John Milton school]

Akhil Sharma -97% [Symboyzia school] Swapnil -97% [Milton public school] Anjali Verma - 96% [Symboyzia school] AyushGarg -96% [Symboyzia school] Girdhar Gopal-96% [Milton public school] Salabh Agarwal-96% [SimpkinsSchool]

AnkurGarg-95% [Symboyzia school] Anirban Mondal-95% [Air force School] Mradul Singh-95% [Air force School] Ratandeep-95% [Milton public school] Akshat Tiwari -95% [Simpkins School] Rahul Meena-95% [Symboyzia school] GirijaYadav-95% [Symboyzia school] Abhimanyu-95% [Delhi public school] Sheetal Chahar-95% [Sridevi School] Nishant Gautam-95% [Agra public school] Manish Chaudhary -94% [Air force School] Mukund Madhav-94% [Hillman School]

Q.1 Why are pentahalides more covalent than trihalides? Ans:In pentahalides, the oxidation state is +5 and in trihalides, the oxidation state is +3. Since the metal ion with a high charge has more polarizing power, pentahalides are more covalent than trihalides.

Q.2 Why is BiH₃ the strongest reducing agent amongst all the hydrides of Group 15 elements?

Ans:As we move down a group, the atomic size increases and the stability of the hydrides of group 15 elements decreases. Since the stability of hydrides decreases on moving from NH₃ to BiH₃, the reducing character of the hydrides increases on

Q.7 Bond angle in PH₄⁺ is higher than that in PH₃. Why?

Ans: In PH₃, P is sp³ hybridized. Three orbitals are involved in bonding with three hydrogen atoms and the fourth one contains a lone pair. As lone pair-bond pair repulsion is stronger than bond pair-bond pair repulsion, the tetrahedral shape associated with sp³ bonding is changed to pyramidal. PH₃ combines with a proton to form PH₄⁺ in which the lone pair is absent. Due to the absence of lone pair in PH₄⁺, there is no lone pair-bond pair repulsion. Hence, the bond angle in PH₄⁺ is higher

www.cbsequess.com

Other Educational Portals

CBSEGuess.com

moving from NH₃ to BiH₃.

Q.3 Why is N_2 less reactive at room temperature?

Ans: The two N atoms in N_2 are bonded to each other by very strong triple covalent bonds. The bond dissociation energy of this bond is very high. As a result, N_2 is less reactive at room temperature.

Q.4 Mention the conditions required to maximise the yield of ammonia.

Ans: Ammonia is prepared using the Haber's process. The yield of ammonia can be maximized under the following conditions:

(i) High pressure (~ 200 atm)

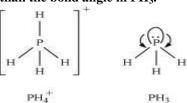
(ii) A temperature of ~700 K

(iii) Use of a catalyst such as iron mixed with small amounts of K₂O and Al₂O₃.

Q.5 How does ammonia react with a solution of Cu²⁺? Ans:NH₃ acts as a Lewis base. It donates its electron pair and forms a linkage with metal ion.

$$Cu^{2+}_{(aq)} + 4NH_{3(aq)} \leftrightarrow \left[Cu(NH_3)_4\right]^{2+}_{(aq)}$$

Blue


Deep blue

Q.6 What is the covalence of nitrogen in N_2O_5 ?

Ans:

From the structure of N_2O_5 , it is evident that the covalence of nitrogen is 4.

than the bond angle in PH₃.

Q.8 What happens when white phosphorus is heated with concentrated NaOH solution in an inert atmosphere of CO₂?

Ans: White phosphorous dissolves in boiling NaOH solution (in a CO₂ atmosphere) to give phosphine, PH₃.

$$P_4 + 3 \text{ NaOH} + 3 \text{ H}_2 \text{O} \longrightarrow PH_3 + 3 \text{ NaH}_2 PO_2$$

Phosphine Sodium hypophosphite

Q.9 What happens when PCl₅ is heated?

Ans:All the bonds that are present in PCl_5 are not similar. It has three equatorial and two axial bonds. The equatorial bonds are stronger than the axial ones. Therefore, when PCl_5 is heated strongly, it decomposes to form PCl_3 .

$$PCl_5 \xrightarrow{heat} PCl_3 + Cl_2$$

Q.10 Write a balanced equation for the hydrolytic reaction of PCl_5 in heavy water.

$$PCl_5 + 4D_2O \longrightarrow D_3PO_4 + 5DCl$$

Ans:

Q.11 What is the basicity of H_3PO_4 ?

Answer : H₃PO₄

$$H_3PO_4 = P$$
 $HO OH$
 OH

Since there are three OH groups present in H₃PO₄, its basicity is three i.e., it is a tribasic acid.

www.cbsequess.com

CBSEGuess.com