Class: 12th

Assignment-1(Maths)

- 1. Give an example of a relation which is
 - (a) Reflexive neither symmetric nor transitive. (b) Symmetric but neither reflexive nor transitive.
 - (c) Transitive but neither reflexive nor symmetric. (d) Reflexive and symmetric but not transitive.
 - (e) Reflexive and transitive but not symmetric. (f) Symmetric and transitive but not reflexive.
- **2.** If $R = \{(x, y): x + 2y = 8 \}$ is a relation on N. Write the range of R.
- **3.** Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T_1, T_2): T_1 \cong T_2\}$. Show that R is an equivalence relation.
- **4.** Let Z be the set of all integers and relation defined as $R = \{(a, b): a b \text{ is divisible by 5}; a, b \in Z\}$ Prove that R is an equivalence relation.
- **5.** Check whether the relation R in R defined by: (a) $R = \{(x, y): x \le y^2 : x, y \in R\}$ (b) $R = \{(a, b): a \le b^3 : a, b \in R\}$ is reflexive, Symmetric and transitive.
- **6.** Prove that the relation on the set $A = \{5,6,7,8,9\}$ given by $R = \{(a,b): |a-b| | is divisible by 2\}$ is an equivalence relation. Find all elements related to element 6.
- 7. Let L be the set of all lines in a plane and R be the relation in L defined as $R = \{(L_1, L_2): L_1 is \ perpendicular \ to \ L_2\}$. Check the relation is reflexive, Symmetric and transitive. Find the set of all lines related to line y = 3x + 7.
- **8.** Show that $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$ is bijective. where $A = R \{3\}$ and $B = R \{1\}$
- **9.** If $f(x) = \frac{4x+3}{6x-4}$; $x \neq \frac{2}{3}$. Show that $f: R \to R$ is invertible and $f \circ f(x) = x$. Also find f^{-1} .
- **10.** If $f: R \to R$ defined by $f(x) = \frac{3x+5}{2}$ is an invertible function. Also find $f^{-1}(x)$.
- **11.** Consider $f: R_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is an invertible function. Also prove that $f^{-1}(x) = \frac{\sqrt{x+6}-1}{3}$
- **12.** Prove that $f: N \to N$ defined by $f(x) = x^2 + x + 1$ is one-one but not onto.
- **13.** If $f: N \to S$ defined by $f(x) = 4x^2 + 12x + 15$ where S is range of f. show that f is invertible also find f^{-1} .
- **14.** Let R be the set of real numbers and $f: R \to R$ be the function defined by f(x) = 4x + 5. Show that f is invertible and find $f^{-1}(z)$.
- **15.** Check the injectivity and surjectivity of $f: R \to R$ given by $f(x) = x^2$. Also check if domain replaced by N and co-domain by N.
- **16.** Let $f: N \to N$ defined by $f(n) = \begin{cases} \frac{n+1}{2} \text{ ; if } n \text{ is odd} \\ \frac{n}{2} \text{ ; if } n \text{ is even} \end{cases}$ for all $n \in N$.

State whether the function f is bijective. Justify your answer.

- **17.** Show that $f: N \to N$ given by $f(x) = \begin{cases} x+1 \ ; if \ x \ is \ odd \\ x-1 \ ; if \ x \ is \ even \end{cases}$ is both one-one onto. find f^{-1} .
- **18.** Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2 + 1}$; $\forall x \in R$ is neither one-one nor onto.
- **19.** If the function $f: R \to R$ is given by $f(x) = x^2 + 3x + 1$ and $g: R \to R$ is given by g(x) = 2x 3 Find (a) $f \circ g$ (b) $g \circ f$ (c) $f \circ f$ (d) $g \circ g$
- **20.** If the function $f: R \to R$ be given by $f(x) = x^2 + 2$ and $g: R \to R$ be given by $g(x) = \frac{x}{x-1}$; $x \ne 1$. Find $f \circ g$ and $g \circ f$ and hence find $f \circ g(2)$ and $g \circ f(-3)$
- **21.** Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the relation $g: R \to R$ such that $f \circ g = g \circ f = I_R$
- **22.** Find *hog* and *goh* if $h(x) = 27x^3$ and $g(x) = x^{\frac{1}{3}}$

Designed By: Gursharnjeet Singh (M.Sc Maths) contact No. 9988498560

Chapter: 1

- **23.** If the function $f: R \to R$ is given by $f(x) = (3 x^3)^{\frac{1}{3}}$ then find $f \circ f(x)$.
- **24.** If $f: A \to B$ defined by $f(x) = \frac{3x+4}{5x-7}$ and $g(x) = \frac{7x+4}{5x-3}$ show that $f \circ g = I_A$ and $g \circ f = I_B$ where $=R-\left\{\frac{3}{5}\right\}$, $B=R-\left\{\frac{7}{5}\right\}$ and I is identity function.
- **25.** Let $f, g: R \to R$ be two functions defined as f(x) = |x| + x and g(x) = |x| x; $\forall x \in R$ Then, find $f \circ g$ and $g \circ f$.
- **26.** If f be modulus function and g be greatest integer function then evaluate $f \circ g\left(\frac{-5}{2}\right) g \circ f\left(\frac{-5}{2}\right)$
- **27.** Let * be binary operation defined by a * b = 3a + 4b 2. Find 4 * 5
- **28.** Let * be binary operation on Q defined by $a*b = \frac{3ab}{5}$. Show that * is commutative as well as associative. Also find identity element and inverse element.
- **29.** Let $A = N \times N$ and * be binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative . Also find identity element for * if exists.
- **30.** Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as $a*b = \begin{cases} a+b \; ; & \text{if } a+b < 6 \\ a+b-6 \; ; & \text{if } a+b \ge 6 \end{cases}$ Write the operation table of * and show that 0 is the identity element for * and each element α of the set is invertible with 6 - a being the inverse of a.
- **31.** Let X be non empty set. P(X) be its power set. Let * be operation defined on P(X) by $A * B = A \cap B \quad \forall A, B \in P(X)$ then (a) Prove that * be binary operation in P(X)(b) Prove that * is commutative (c) Prove that * is associative (d) Find the identity element in P(X). (e) Find all invertible elements identity of P(X). (f) If o is another binary operation defined on P(X)as $A \circ B = A \cup B$. Then verify that o distributes itself over *
- **32.** In the set N of natural numbers, define the binary operation * by $m*n=g.c.d(m,n) \ \forall m,n \in N$ Is the operation * commutative and associative? Also find identity element for * if exists.

Answer Key

- **1.** Relation R defined on A= $\{1,2,3\}$ (a) $R = \{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ (b) $R = \{(1,2),(2,1)\}$ (c) $R = \{(1,2), (2,3), (1,3)\}\$ (d) $R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}\$ (e) $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}$ (f) $R = \{(1,2), (2,1), (1,1), (2,2)\}$
- **2.** $R = \{(6,1), (4,2), (2,3)\}$ Range = $\{1,2,3\}$ **5.** (a)(b) Not reflexive not Symmetric not transitive.
- **6.** {6,8} **7.** Only Symmetric, set of lines $y = \frac{-1}{3}x + c$ **9.** $f^{-1} = \frac{4x+3}{6x-4} = f$
- **10.** $f^{-1} = \frac{2x-5}{3}$ **13.** $f^{-1}(y) = \frac{\sqrt{y-6}-3}{2}$ **14.** $f^{-1}(z) = \frac{z-5}{4}$
- **15.** (a) neither one-one nor onto (b) only one-one **16.** Not bijective
- **17.** $f^{-1}(y) = \begin{cases} y-1 \text{ ; if } y \text{ is even} \\ y+1 \text{ ; if } y \text{ is odd} \end{cases}$ **19.** (a) $f \circ g = 4x^2 6x + 1$ (b) $g \circ f = 2x^2 + 6x 1$ (c) $fof = x^4 + 6x^3 + 14x^2 + 15x + 5$ (d) gog = 4x - 9
- **20.** $f \circ g = \frac{3x^2 4x + 2}{x^2 2x + 1}$, $g \circ f = \frac{x^2 + 2}{x^2 + 1}$, $f \circ g(2) = 6$, $g \circ f(-3) = \frac{11}{10}$ **21.** $g(x) = \frac{x 7}{10}$
- **22.** hog(x) = 27x, goh(x) = 3x
- **25.** $f \circ g(x) = 2 \cdot x$, $g \circ h(x) = 3 \cdot x$ **25.** $f \circ g(x) = \begin{cases} 0 \ ; & \text{if } x \ge 0 \\ -4x \ ; & \text{if } x < 0 \end{cases}$, $g \circ f(x) = 0$ **26.** 1 **27.** 30 **28.** $e = \frac{5}{3}$, $Inverse = \frac{25}{9a}$ **29.** e does not exist **31.** (d) e = X (e) only invertible element = X