Chapter -4

Chemical kinetics

Theory problems

- 1. What is the difference between order of the reaction and molecularity of the reaction.
- 2. Write the unit of rate constant for
 - a. Zero order reaction
 - b. First order reaction
 - c. Second order reaction
- 3. Consider the following graph and answer the given question
 - a. What is order of reaction?
 - b. What is rate law for this reaction
 - c. What the unit is of rate const.
 - d. How much time the rate will change if concentration is reduced by factor 2.

4. Reaction
$$2NO + 2H_2 \rightarrow N_2 + 2H_2O$$
 takes place in following two step-

$$\begin{array}{ll} 2NO + H_2 & \longrightarrow N_2 + H_2O_2 & slow \\ H_2O_2 + H_2 & \longrightarrow 2H_2O & fast \end{array}$$

Now answer the following question-

- a. Write the rate law for this reaction
- b. What is order of the reaction?
- c. What is the molecularity of the reaction at each individual step
- d. What is the unit of rate const if concentration is expressed in mol dm⁻³ and time in hours
- 5. For the reaction-

$$C_{12} + H_{22} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$$

Write-

- a. Rate of reacton expression
- b. Rate law equation
- c. Molecularity
- d. Order of reaction
- 6. Consider the graph and answer the following question
 - a. What is order of the reaction
 - b. What is unit of rate const
 - c. What does the slope indicate?
 - d. What happens if concentration doubled.

- 7. For which type of reactions, order and molecularity have the same value?
- 8. For a general reaction $A \rightarrow B$, plot of concentration of A vs time is given in figure. Answer the following question on the basis of this graph
 - a. What is the order of the reaction?
 - b. What is the slope of the curve?
 - c. What are the units of rate constant?

9. Account the following-

- a. The reaction between H_2 and O_2 is highly feasible yet allowing the gases stand at room temperature in the same vessel does not lead to the formation of water.
- b. Rate of a reaction increase with rise in temperature.
- c. Oxygen is available in plenty in air yet fuels do not burn by themselves at temperature.
- d. The probability of reaction with molecularity higher than three is very rare.
- e. The rate of any reaction generally decreases during the course of the reaction.
- f. Thermodynamic feasibility of the reaction alone cannot decide the rate of the reaction.
- g. The redox titration of KMnO₄ vs oxalic acid, we heat oxalic acid solution before starting the titration?
- h. Molecularity of any reaction can not be equal to zero?
- i. Molecularity is applicable only for elementary reactions and order is applicable for elementary as well as complex reactions.
- j. We can't determine the order of a reaction by taking into consideration the balanced chemical equation?
- k. For a reaction $A + B \rightarrow Products$, the rate law is Rate = k [A][B]^{3/2} Can the reaction be an elementary reaction? Explain.
- 1. For a certain reaction large fraction of molecules has energy more than the threshold energy, yet the rate of reaction is very slow.
- m. For a zero order reaction will the molecularity be equal to zero.

Numerical problems

- 1. For the reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03M to 0.02M in 25 minutes. Calculate the average rate of reaction.
- 2. Calculate the overall order of a reaction which have rate = $k [A]^{1/2} [B]^{3/2}$
- 3. Find reaction order if rate constants $k = 2.3 \times 10^{-5} L \text{ mol}^{-1} \text{ s}^{-1}$
- 4. The conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times how will it affect the rate of formation of Y
- 5. In a reaction if the concentration of reactant A is tripled, the rate of reaction becomes twenty seven times. What is the order of the reaction?
- 6. The initial concentration of N_2O_5 in the following first order reaction $N_2O_5 \rightarrow 2\ NO_2 + 1/2O_2\ was\ 1.24 \times 10^{-2}\ mol\ L^{-1}$ at 318 K. The concentration of N_2O_5 after 60 minutes was $0.20 \times 10^{-2}\ mol\ L^{-1}$. Calculate the rate constant of the reaction at 318 K.

- 7. A first order reaction is found to have a rate constant, $k = 5.5 \times 10^{-14} \text{ s}^{-1}$. Find the half-life of the reaction.
- 8. A first order reaction has a rate constant 1.15×10^{-3} s⁻¹. How long will 5 g of this reactant take to reduce to 3 g?
- 9. Time required to decompose SO₂Cl₂ to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.
- 10. The rate constants of a reaction at 500K and 700K are $0.02s^{-1}$ and $0.07s^{-1}$ respectively. Calculate the values of E_a and A.
- 11. The first order rate constant for the decomposition of ethyl iodide by the reaction at $600 \, \mathrm{K}$ is $1.60 \times 10^{-5} \, \mathrm{s}^{-1}$. Its energy of activation is 209 kJ/mol. Calculate the rate constant of the reaction at $700 \, \mathrm{K}$.

$$C_2H_5I \rightarrow C_2H_4 + HI$$

- 12. For the reaction:
 - $2A + B \rightarrow A_2B$ the rate = $k[A][B]^2$ with $k = 2.0 \times 10^{-6} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$. Calculate the initial rate of the reaction when $[A] = 0.1 \text{ mol L}^{-1}$, $[B] = 0.2 \text{ mol L}^{-1}$. 4.3
- 13. The decomposition of NH₃ on platinum surface is zero order reaction. What are the rates of production of N₂ and H₂ if $k = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{ L s}^{-1}$?
- 14. A reaction is first order in A and second order in B.
 - a. Write the differential rate equation.
 - b. How is the rate affected on increasing the concentration of B three times?
 - c. How is the rate affected when the concentrations of both A and B are doubled?
- 15. In a reaction between A and B, the initial rate of reaction (r₀) was measured for different initial concentrations of A and B as given below:

A/mol L⁻¹ 0.20 0.20 0.40
B/mol L⁻¹ 0.30 0.10 0.05

$$\mathbf{r_0/mol\ L^{-1}s^{-1}}$$
 5.07 × 10⁵ 5.07 × 10⁻⁵ 1.43 × 10⁻⁴

- a. Determine the rate law.
- b. Determine rate const.
- c. What is the order of the reaction with respect to A and B?
- 16. A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1/2}$.
- 17. The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} \text{s}^{-1}$ at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor.
- 18. Consider a certain reaction A \rightarrow Products with k = $2.0 \times 10^{-2} \text{s}^{-1}$. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L⁻¹.
- 19. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1/2} = 3.00$ hours. What fraction of sample of sucrose remains after 8 hours
- 20. The decomposition of hydrocarbon follows the equation $k = (4.5 \times 10^{11} \text{s}^{-1}) \text{ e}^{-28000 \text{K/T}}$ Calculate E_a .
- 21. A first order reaction is 50% completed in 1.26 x 10¹⁴ s. How much time would it take for 100% completion?

$\frac{dy}{dx}$ classes	opp sitapur eye hospital, shahjahanpur, 9935230271
Page 4 of 4 chemical kinetics.	